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Abstract
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Professor Sewoong Oh

Paul G. Allen School of Computer Science and Engineering

The rapid advancement of machine learning over the past decade has been driven by the

increasing availability of large-scale datasets. However, this growth has raised critical concerns

regarding the privacy of individuals whose data is being used, as well as the robustness of

algorithms against potentially malicious data corruption from unreliable sources. This thesis

aims to explore the fundamental interplay between differential privacy (DP) and outlier

robustness in machine learning.

This thesis investigates several canonical statistical problems to uncover the inherent

connections between DP and robustness. The first problem addresses whether it is possible to

develop algorithms that are both differentially private and robust to outliers without requiring

additional data. We present the first efficient algorithm with sub-optimal sample complexity.

Then, we introduce a unifying framework that achieves nearly optimal sample complexity,

without considering computational efficiency, across various problems, including mean esti-

mation, linear regression, covariance estimation, and principal component analysis (PCA).

Finally, we propose two efficient algorithms that achieve near-optimal sample complexity for

differentially private PCA and linear regression.

The findings of this research contribute to a deeper understanding of the interplay between

privacy and robustness, providing new insights into the design of algorithms that are both



statistically optimal and computationally efficient for practical applications. The results

presented in this thesis open avenues for further exploration into the protection of data

privacy, particularly in high-dimensional and adversarial settings.
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Chapter 1

INTRODUCTION

The past decade has witnessed significant advancements in machine learning, largely

driven by the proliferation of large-scale datasets. However, as these datasets have scaled,

concerns regarding the privacy of the individuals represented in them have become increasingly

prominent. At the same time, as data is sourced from a growing number of institutions,

not all of which can be deemed trustworthy, there is a corresponding rise in concerns about

the robustness of algorithms against malicious data corruption. Interestingly, privacy and

robustness are inherently related, as both require algorithms to be insensitive to small

perturbations in the dataset. The focus of this thesis is to investigate the fundamental

connections and limitations between differential privacy and outlier robustness for machine

learning algorithms. This chapter introduces the problem statement within the following

framework of statistical estimation.

Estimating a parameter of a distribution is a canonical problem in statistics: given i.i.d.

samples S = {x1, x2, . . . , xn} from a distribution Pθ, which belongs to a known family P and

is indexed by an unknown parameter θ, the goal is to find an estimator θ̂ that minimizes the

distance ℓ(θ, θ̂). Two important desiderata for parameter estimation algorithms are differential

privacy (DP) and robustness:

Differential Privacy : Introduced by Dwork et al. [78], DP has become the de facto standard

for data privacy, widely used from U.S. Census data [2] to real-world commercial systems

[189, 82, 84]. Informally, an estimator is considered DP if the likelihood of the (randomized)

outcome does not change significantly when a single arbitrary entry is added or removed, as

formally defined in Section 1.1. This strong privacy guarantee ensures that even if an adversary

knows all other entries, they cannot confidently identify whether a specific individual’s data
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was included in the database, thereby providing plausible deniability for individual privacy.

Robustness: The strong contamination model considers scenarios where an α-fraction of

the i.i.d. samples are adversarially corrupted, as formally defined in Section 1.1. Our

objective is to develop a reliable estimator that still maintains high utility. Since the

1960s, Tukey and Huber have studied Gaussian mean estimation and linear regression under

weaker corruption models-Huber’s model [194, 14, 115]. However, these algorithms are

computationally intractable for high-dimensional problems. Only recently, in 2016, the first

polynomial-time algorithm that achieves optimal robustness was proposed [64, 150]. This

breakthrough has sparked a flurry of research on robust estimation problems, including

mean estimation [64, 73, 105, 106, 66], covariance estimation [50, 154], linear regression and

sparse regression [31, 29, 23, 93, 174, 143, 63, 155, 138, 55, 170, 70, 137], principal component

analysis [145, 121].

DP and robustness are intuitively related: both concepts require an algorithm to be

stable or insensitive to small changes in the input. As early as 2009, Dwork and Lei observed

that robust estimators could be adapted to provide privacy through the propose-test-release

(PTR) framework [77]. This approach builds on the intuition that robust estimators, such as

the median and truncated mean, are generally less sensitive than non-robust estimators like

the mean, thus providing a good starting point for private estimators. However, satisfying

DP guarantees is technically more challenging due to two main reasons: 1) DP requires

guarantees in the worst-case scenario—meaning the algorithm must remain insensitive within

a neighborhood around every input dataset, whereas a robust algorithm only needs to

handle the average case around well-behaved distributions; 2) DP requires strict adherence

to distributional distances, while robust algorithms focus primarily on final utility. These

technical differences pose theoretical and practical challenges for applying robust estimators

to private estimation problems, leading to the result that PTR only works in low-dimensional

settings and does not provide optimal privacy guarantees for many high-dimensional canonical

problems, such as subGaussian mean estimation and linear regression.
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Since DP appears more stringent than robustness, one might be misled into thinking that

privacy ensures robustness since DP guarantees that a single outlier cannot significantly alter

the estimation. This intuition is true only in low-dimensional settings; in high dimensions,

each corrupted data point can appear uncorrupted but still significantly shift the parameter

when colluding [160].

The interplay between DP and robustness in parameter estimation offers both significant

opportunities and challenges due to their similar intuitions but differing requirements and

data models. These disparities pose intriguing questions for this thesis, particularly whether

it is feasible to develop algorithms that simultaneously satisfy both robustness and privacy

without additional samples. Furthermore, this research explores how robust estimators can

enhance privacy protections in solving many open problems related to high-dimensional private

estimation. Ultimately, our goal is to design algorithms that are not only statistically optimal

but also computationally efficient for practical tasks such as PCA and linear regression.

1.1 Preliminaries

We first recall the definitions of differential privacy and the strong contamination model. We

say two datasets S and S ′ of the same size are neighboring if the Hamming distance between

them is at most one.

Definition 1.1.1 ([78]). We say a randomized algorithm M : X n → Y is (ε, δ)-differentially

private if for all neighboring databases S ∼ S ′ ∈ X n, and all Y ⊆ Y, we have P(M(S) ∈

Y ) ≤ eεP(M(S ′) ∈ Y ) + δ.

Definition 1.1.2 (Strong Contamination Model [64]). Given a set Sgood = {x̃i ∈ Rd}ni=1 of

n data points, an adversary inspects all data points, selects αcorruptn of the data points, and

replaces them with arbitrary dataset Sbad of size αcorruptn. The resulting dataset S = {xi ∈

Rd}ni=1 is called α-corrupted dataset.

Contributions: In this thesis, we aim to develop statistically optimal algorithms for canonical
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problems in parameter estimation, such as mean estimation, linear regression, and PCA under

differential privacy/robustness constraints. The contributions of this work are threefold:

1. In Chapter 2, we propose the first computationally efficient algorithm that achieves

both robustness and privacy simultaneously.

2. In Chapter 3, focusing only on the statistical cost without concerning computational

efficiency, we introduce a generic unifying framework, High-dimensional Propose-Test-

Release (HPTR), which leverages robust estimators to achieve not only optimal sample

complexity for many previously open problems but also optimal robustness as a byprod-

uct.

3. In Chapter 4 and Chapter 5, we provide both time-efficient and statistically optimal

private estimators for PCA and linear regression.

Bibliographies: The result of Chapter 2 for private and robust mean estimation was

published at [160]. The result of Chapter 3 for HPTR original was published at [161]. The

result of Chapter 4 for DP-PCA was originally published at [159]. The result of Chapter 5

for label-robust differentially private linear regression was originally published at [158].
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Chapter 2

DIFFERENTIALLY PRIVATE AND ROBUST MEAN
ESTIMATION

2.1 Introduction

When releasing database statistics on a collection of entries from individuals, we would

ideally like to make it impossible to reverse-engineer each individual’s potentially sensitive

information. Privacy-preserving techniques add just enough randomness tailored to the

statistical task to guarantee protection. At the same time, it is becoming increasingly

common to apply such techniques to databases collected from multiple sources, not all of

which can be trusted. Emerging data access frameworks, such as federated analyses across

users’ devices or data silos [124], make it easier to temper with this collected dataset, leaving

private statistical analyses vulnerable to a malicious corruption of a fraction of the data.

Differential privacy has emerged as a widely accepted de facto measure of privacy, which

is now a standard in releasing the statistics of the U.S. Census data [2] statistics and also

deployed in real-world commercial systems [189, 82, 84]. A statistical analysis is said to

be differentially private if the likelihood of the (randomized) outcome does not change

significantly when a single entry is replaced by another arbitrary entry (formally defined in

§2.1.1). This provides a strong privacy guarantee: even a powerful adversary who knows all

the other entries in the database cannot confidently identify whether a particular individual

is participating in the database based on the outcome of the analysis, providing plausible

deniability, central to protecting an individual’s privacy. Despite more than a decade of

literature focused in designing private mechanisms for various statistical and learning tasks,

only recently have some of the most fundamental questions been resolved.

In this work, we focus on one of the most canonical problems in statistics: estimating the
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mean of a distribution from i.i.d. samples. For distributions with unbounded support, such

as sub-Gaussian and heavy-tailed distributions, fundamental trade-offs between accuracy,

sample size, and privacy have only recently been identified [139, 129, 135, 4] and efficient

private estimators proposed. However, these approaches are brittle when a fraction of the

data is corrupted, posing a real threat – referred to as data poisoning attacks [48, 211] – and

therefore emerging as a popular setting of recent algorithmic and mathematical breakthroughs

[186, 64] in the defense of such attacks.
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Figure 2.1: Private mean estimators (e.g., DP mean [129]) is vulnerable to adversarial

corruption especially in high dimensions, while the proposed PRIME achieves robustness

(and privacy) regardless of the dimension of the samples. Both are (ε = 10, δ = 0.01)-

DP and α = 0.05 fraction of data is corrupted. Each data point is repeated 50 runs

and standard error is shown as the error bar. Our implementation is available at https:

//github.com/xiyangl3/robust_dp.

One might be mislead to thinking that privacy ensures robustness since differential privacy

guarantees that a single outlier cannot change the estimation too much. This intuition is

true only in low dimensions where each sample has to be an obvious outlier to significantly

change the mean. However, in high dimensions, each corrupted data point can look perfectly

uncorrupted but still shift the mean significant when colluding together (Figure 2.1). Focusing

on the canonical problem of mean estimation, we introduce novel algorithms that achieve

https://github.com/xiyangl3/robust_dp
https://github.com/xiyangl3/robust_dp
https://github.com/xiyangl3/robust_dp
https://github.com/xiyangl3/robust_dp
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robustness and privacy simultaneously even when a fraction of data is corrupted arbitrarily

by an adversary.

For such algorithms, there is a fundamental question of interest: do we need more samples

to make private mean estimation also robust against adversarial corruption?

If we can afford exponential run-time in the dimension, we show that robustness can

be achieved without extra cost in sample complexity. We introduce a novel estimator that

nearly matches the known lower bound for a (non-robust) private mean estimation, as shown

in Table 2.1. Its sole restriction is that the accuracy cannot surpass Ω(α) when we have

α fraction corrupted, which is necessary even for a (non-private) robust mean estimation

with infinite samples. We nearly match this fundamental bound, achieving O(α
√
log(1/α))

accuracy with an information theoretically optimal sample complexity.

Theorem 1 (Informal version of Theorem 8, exponential time algorithm for sub-Gaussian

distributions). When α fraction of the data is arbitrarily corrupted from n samples drawn

from a d-dimensional sub-Gaussian distribution with mean µ and an identity sub-Gaussian

parameter, if n = Ω̃(d/α2 + (d+ d1/2 log(1/δ))/(αε)) then Algorithm 8 is (ε, δ)-differentially

private and achieves ∥µ̂− µ∥2 = O(α
√

log(1/α)) with high probability.

We introduce PRIME (PRIvate and robust Mean Estimation) in Algorithm 5 to make

robust and private mean estimation computationally efficient. It requires a run-time of

only Õ(d3 + nd2), but at the cost of requiring extra d1/2 factor larger number of samples.

This cannot be improved upon with current techniques since efficient robust estimators rely

on the top PCA directions of the covariance matrix to detect outliers. [209] showed that

Ω̃(d3/2) samples are necessary to compute PCA directions while preserving (ε, δ)-differential

privacy. It remains an open question if this Ω̃(d3/2/(αε)) bottleneck is fundamental because no

matching lower bound is currently known for the differentially private robust mean estimation

problem.

Theorem 2 (Informal version of Theorem 7, efficient algorithm for sub-Gaussian distributions).

Under the assumption of Theorem 1, if n = Ω̃(d/α2 + (d3/2 log(1/δ))/(αε)) then PRIME is
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(ε, δ)-differentially private and achieves ∥µ̂− µ∥2 = O(α
√

log(1/α)) with high probability.

Upper bound (poly-time) Upper bound (exp-time) Lower bound

(ε, δ)-DP [36, 129] Õ( d
α2 +

d log1/2(1/δ)
αε

) Õ( d
α2 +

d
αε
)♣ Ω̃( d

α2 +
d
αε
)♠

α-corruption [73] Õ( d
α2 ) Õ( d

α2 ) Ω( d
α2 )

α-corruption and Õ
(

d
α2 +

d3/2 log(1/δ)
αε

)
Õ( d

α2 +
d+d1/2 log(1/δ)

αε
) Ω̃( d

α2 +
d
αε
)♠

(ε, δ)-DP (this work) [Theorem 7] [Theorem 8] [129]

Table 2.1: For the fundamental task of learning the mean µ ∈ [−R,R]d of a sub-Gaussian

distribution with a known covariance, we list the sufficient or necessary conditions on the

sample sizes to achieve an error ∥µ̂ − µ∥2 = Õ(α) under (ε, δ)-differential privacy (DP),

corruption of an α-fraction of samples, and both. ♣ requires the distribution to be a Gaussian

and ♠ requires δ ≤
√
d/n.

When the samples are drawn from a distribution with a bounded covariance, parameters of

Algorithm 8 can be modified to nearly match the optimal sample complexity of (non-robust)

private mean estimation in Table 2.2. This algorithm also matches the fundamental limit on

the accuracy of (non-private) robust estimation, which in this case is Ω(α1/2).

Theorem 3 (Informal version of Theorem 9, exponential time algorithm for covariance

bounded distributions). When α fraction of the data is arbitrarily corrupted from n samples

drawn from a d-dimensional distribution with mean µ and covariance Σ ⪯ I, if n = Ω̃((d+

d1/2 log(1/δ))/(αε) + d1/2 log3/2(1/δ)/ε) then Algorithm 8 is (ε, δ)-differentially private and

achieves ∥µ̂− µ∥2 = O(α1/2) with high probability.

The proposed PRIME-ht for covariance bounded distributions achieve computational

efficiency at the cost of an extra factor of d1/2 in sample size. This bottleneck is also due to

DP-PCA, and it remains open whether this gap can bee closed by an efficient estimator.
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Theorem 4 (Informal version of Theorem 10, efficient algorithm for covariance bounded

distributions). Under the assumptions of Theorem 3, if n = Ω̃((d3/2 log(1/δ))/(αε)) then

PRIME-ht is (ε, δ)-differentially private and achieves ∥µ̂− µ∥2 = O(α1/2) with high proba-

bility.

Upper bound (poly-time) Upper bound (exp-time) Lower bound

(ε, δ)-DP [25, 135] Õ(d log
1/2(1/δ)
αε

) Õ( d
αε
) Ω( d

αε
)

α-corruption [73] Õ( d
α
) Õ( d

α
) Ω( d

α
)

α-corruption and Õ
( d3/2 log(1/δ)

αε

)
Õ(d+(d1/2+αd1/2 log1/2(1/δ)) log(1/δ)

αε
) Ω( d

αε
)

(ε, δ)-DP (this chapter) [Theorem 10] [Theorem 9] [25, 135]

Table 2.2: For the fundamental task of learning the mean µ ∈ [−R,R]d of a covariance

bounded distribution, we list the sufficient or necessary conditions on the sample size to

achieve an error ∥µ̂− µ∥2 = O(α1/2) under (ε, δ)-differential privacy (DP), corruption of an

α-fraction of samples, and both.

Contributions. We introduce a novel private and robust mean estimator that achieves

optimal guarantees but takes an exponential run-time (Algorithm 8). Its innovation is

leveraging on the resilience property of well-behaved distributions not only to estimate the

mean robustly (which is the standard use of the property) but also to adaptively bound the

sensitivity of the estimator, thus achieving optimal privacy.

We introduce new efficient private and robust mean estimators (Algorithms 5 and 9).

These algorithms critically rely on the private version of matrix multiplicative weight filtering

to limit the number of dataset accesses to its minimum. Finally, we present a novel private

1-dimensional filter that uses a private histogram on a set of carefully chosen intervals to

guarantee improvement in each step.
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2.1.1 Preliminaries

Differential privacy provides a formal mathematical metric for measuring privacy leakage

when a dataset is accessed with a query.

Definition 2.1.1 (Differential privacy [78]). Given two datasets S = {xi}ni=1 and S ′ = {x′i}ni=1,

we say S and S ′ are neighboring if they differ in at most one entry, which is denoted by

S ∼ S ′. For an output of a stochastic query q on a database, we say q satisfies (ε, δ)-differential

privacy for some ε > 0 and δ ∈ (0, 1) if P(q(S) ∈ A) ≤ eεP(q(S ′) ∈ A) + δ for all neighboring

databases S ∼ S ′ and all subset A in the range of the query.

By introducing enough randomness when answering a query, we can achieve small values

of ε and δ (and hence strong privacy). This ensures that the query output does not reveal

whether a single person participated in the dataset or not with high confidence, to a powerful

adversary who knows all the other entries of the dataset. The main building block of our

proposed algorithms is output perturbation. Let z ∼ Lap(b) denote a random vector whose

entries are i.i.d. sampled from Laplace distribution with pdf (1/2b)e−|z|/b. Let z ∼ N (µ,Σ)

denote a Gaussian random vector with mean µ and covariance Σ.

Definition 2.1.2 (Output perturbation). The sensitivity of a non-private query f(S) ∈ Rk

is defined as ∆p = supS∼S′ ∥f(S) − f(S ′)∥p for a norm ∥x∥p = (
∑

i∈[k] |xi|p)1/p. For p = 1,

the Laplace mechanism outputs f(S) + Lap(∆1/ε) and achieves (ε, 0)-differential privacy

[78]. For p = 2, the Gaussian mechanism outputs f(S) + N (0, (∆2(
√

2 log(1.25/δ))/ε)2I)

and achieves (ε, δ)-differential privacy [79].

Other output perturbation mechanisms include the exponential mechanism [164] (which

we explain in detail in §2.2) and staircase mechanisms [94, 125] (which achieves the minimum

variance).

Private statistical analysis. Traditional private data analyses require bounded support

of the samples to leverage the resulting bounded sensitivity. For example, each entry is

constrained to have finite ℓ2 norm in standard private principal component analysis [46],
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which does not apply to Gaussian samples. Fundamentally departing from these approaches,

[139] first established an optimal mean estimation of Gaussian samples with unbounded

support. The breakthrough is in first adaptively estimating the range of the data using a

private histogram, thus bounding the support and the resulting sensitivity. This spurred the

design of private algorithms for high-dimensional mean and covariance estimation [129, 32],

heavy-tailed mean estimation [135], learning mixture of Gaussian [134], learning Markov

random fields [214], and statistical testing [42]. Under the Gaussian distribution with no

adversary, [4] achieves an accuracy of ∥µ̂− µ∥2 ≤ α̃ with the best known sample complexity

of n = Õ((d/α̃2)+ (d/α̃ε)+ (1/ε) log(1/δ)) while guaranteeing (ε, δ)-differential privacy. This

nearly matches the known lower bounds of Ω(d/α̃2) for non-private finite sample complexity,

Ω̃((1/ε)min{log(1/δ), log(R)}) for privately learning one-dimensional unit variance Gaussian

[139], and Ω̃(d/α̃ε) for multi-dimensional Gaussian estimation [129]. However, this does

not generalize to sub-Gaussian distributions and [4] does not provide a tractable algorithm.

A polynomial time algorithm is proposed in [129] that achieves a slightly worse sample

complexity of Õ((d/α̃2) + (d log1/2(1/δ)/α̃ε)), which can also seamlessly generalized to sub-

Gaussian distributions. For estimating the mean of a covariance bounded distributions up

to an accuracy of ∥µ̂ − µ∥2 = O(α̃1/2), [135] shows that Ω(d/(α̃ε)) samples are necessary

and provides an efficient algorithm matching this up to a factor of log1/2(1/δ). In the same

paper, an inefficient algorithm based on the exponential mechanism with a tournament-based

scoring is proposed, that achieves the optimal sample complexity with pure (ε, δ = 0)-DP. It

might be possible to extend this approach to design an robust and DP mean estimator (with

exponential run-time).

With a similar motivation as this work but for a different problem of learning half-

spaces robustly and privately, [96] provides the fundamental limits on the sample complexity

and proposes efficient algorithms matching those information theoretic lower bounds. The

approach is a variation of the margin perceptron algorithm, and uses batch sampling together

with Laplace and Gaussian mechanisms.
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Robust estimation. Designing robust estimators under the presence of outliers has been

considered by statistics community since 1960s [194, 14, 115]. Recently, [62, 150] give

the first polynomial time algorithm for mean and covariance estimation with no (or very

weak) dependency on the dimensionality in the estimation error. Since then, there has

been a flurry of research on robust estimation problems, including mean estimation [64,

73, 105, 106, 66], covariance estimation [50, 154], linear regression and sparse regression

[31, 29, 23, 93, 174, 143, 63, 155, 138, 55, 170, 70, 137], principal component analysis [145, 121],

mixture models [61, 122, 147, 110] and list-decodable learning [69, 175, 43, 21, 52]. See [67]

for a survey of recent work.

One line of work that is particularly related to our algorithm PRIME is [49, 73, 57, 50, 52],

which leverages the ideas from matrix multiplicative weight and fast SDP solver to achieve

faster, sometimes nearly linear time, algorithms for mean and covariance estimation. In

PRIME, we use a matrix multiplicative weight approach similar to [73] to reduce the iteration

complexity to logarithmic, which enables us to achieve the d3/2 dependency in the sample

complexity.

The concept of resilience is introduced in [186] as a sufficient condition such that learning

in the presence of adversarial corruption is information-theoretically possible. The idea of

resilience is later generalized in [217] for a wider range of adversarial corruption models.

While there exists a simple exponential time robust estimation algorithm under resilience

conditions, it is challenging to achieve differential privacy due to high sensitivity. We propose

a novel approach to leverage the resilience property in our exponential time algorithm for

sub-gaussian and heavy-tailed distributions.

2.1.2 Problem formulation

We are given n samples from a sub-Gaussian distribution with a known covariance but

unknown mean, and α fraction of the samples are corrupted by an adversary. Our goal is to

estimate the unknown mean. We follow the standard definition of adversary in [64], which can

adaptively choose which samples to corrupt and arbitrarily replace them with any data points.
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The main challenge is in achieving the near optimal accuracy of ∥µ̂(S)−µ∥2 = O(α
√

log(1/α))

while preserving (ε, δ)-differential privacy.

Assumption 1 (α-corrupted sub-Gaussian model). An uncorrupted dataset Sgood consists

of n i.i.d. samples from a d-dimensional sub-Gaussian distribution with mean µ ∈ [−R,R]d

and covariance E[xx⊤] = Id, which is 1-sub-Gaussian, i.e., E[exp(v⊤x)] ≤ exp(∥v∥22/2). For

some α ∈ (0, 1/2), we are given a corrupted dataset S = {xi ∈ Rd}ni=1 where an adversary

adaptively inspects all the samples in Sgood, removes αn of them, and replaces them with Sbad

which are αn arbitrary points in Rd.

Similarly, we consider the same problem for heavy-tailed distributions under the bounded

covariance assumption.

Assumption 2 (α-corrupted bounded covariance model). An uncorrupted dataset Sgood

consists of n i.i.d. samples from a distribution D with mean µ ∈ [−R,R]d and covariance

Σ ⪯ I. For some α ∈ (0, 1/2), we are given a corrupted dataset S = {xi}ni=1 where an

adversary adaptively inspects all the samples in Sgood, removes αn of them and replaces them

with Sbad which are αn arbitrary points in Rd.

Notations. Let [n] = {1, 2, . . . , n}. For x ∈ Rd, we use ∥x∥2 = (
∑

i∈[d](xi)
2)1/2 to denote

the Euclidean norm. For X ∈ Rd×d, we use ∥X∥2 = max∥v∥2=1 ∥Xv∥2 to denote the spectral

norm. The d× d identity matrix is Id. Whenever it is clear from context, we use S to denote

both a set of data points and also the set of indices of those data points. Õ and Ω̃ hide

poly-logarithmic factors in d, n, 1/α, R, and the failure probability.

Outline. We present our results for sub-Gaussian distribution first. We provide a background

on existing approaches in §2.2. We introduce an efficient algorithm for mean estimation in

§2.3. We then introduce an exponential time algorithm with near optimal guarantee in §2.4.

Analogous results for heavy-tailed distributions are presented in in §2.5.
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2.2 Background on exponential time approaches for Gaussian distributions

In this section, we provide a background on exponential time algorithms that achieve optimal

guarantees but only applies to and heavily relies on the assumption that samples are drawn

from a Gaussian distribution. In §2.4, we introduce a novel exponential time approach that

seamlessly generalizes to both sub-Gaussian and covariance-bounded distributions.

We introduce Algorithm 1, achieving the optimal sample complexity of Õ(d/min{αε, α2})

(Theorem 5). The main idea is to find an approximate Tukey median (which is known to be

a robust estimate of the mean [218]), using the exponential mechanism of [164] to preserve

privacy.

Tukey median set. For any set of points S = {xi ∈ Rd}ni=1 and µ̂ ∈ Rd, the Tukey depth is

defined as the minimal empirical probability density on one side of a hyperplane that includes

µ̂:

DTukey(S, µ̂) = inf
v∈Rd

Px∼p̂n(v
⊤(x− µ̂) ≥ 0) ,

where p̂n is the empirical distribution of S. The Tukey median set is defined as the set of

points achieving the maximum Tukey depth, which might not be unique. Tukey median

reduces to median for d = 1, and is a natural generalization of the median for d > 1. Inheriting

robustness of one-dimensional median, Tukey median is known to be a robust estimator of

the multi-dimensional mean under an adversarial perturbation. In particular, under our

model, it achieves the optimal sample complexity and accuracy. This optimality follows

from the well-known fact that the sample complexity of O((1/α2)(d+ log(1/ζ))) cannot be

improved upon even if we have no corruption, and the fact that the accuracy of O(α) cannot

be improved upon even if we have infinite samples [218]. However, finding a Tukey median

takes exponential time scaling as Õ(nd) [157].

Corollary 2.2.1 (Corollary of [218, Theorem 3]). For a dataset of n i.i.d. samples from a

d-dimensional Gaussian distribution N (µ, Id), an adversary corrupts an α ∈ (0, 1/4) fraction
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of the samples as defined in Assumption 1. Then, any µ̂ in the Tukey median set of a corrupted

dataset S satisfies ∥µ̂−µ∥2 = O(α) with probability at least 1−ζ if n = Ω((1/α2)(d+log(1/ζ))).

Exponential mechanism. The exponential mechanism was introduced in [164] to elicit

approximate truthfulness and remains one of the most popular private mechanisms due to

its broad applicability. It can seamlessly handle queries with non-numeric outputs, such as

routing a flow or finding a graph. Consider a utility function u(S, µ̂) ∈ R on a dataset S and a

variable µ̂, where higher utility is preferred. Instead of truthfully outputting argmaxµ̂ u(S, µ̂),

the exponential mechanism outputs a randomized approximate maximizer sampled from the

following distribution:

rS(µ̂) =
1

ZS

e
ε

2∆u
u(S,µ̂) , (2.1)

where ∆u = maxµ̂,S∼S′ |u(S, µ̂) − u(S ′, µ̂)| is the sensitivity of u (from Definition 2.1.2)

and ZS ensures normalization to one. This mechanism is (ε, 0)-differentially private, since

e
ε

2∆u
|u(S,µ̂)−u(S′,µ̂)| ≤ eε/2 and e−ε/2 ≤ ZS/ZS′ ≤ eε/2.

Proposition 2.2.2 ([164, Theorem 6] ). The sampled µ̂ from the distribution (2.1) is

(ε, 0)-differentially private.

This naturally leads to the following algorithm. The privacy guarantee follows immediately

since the Tukey depth has sensitivity 1/n, i.e., |DTukey(Sn, µ̂)−DTukey(S
′
n, µ̂) | ≤ 1/n for all

µ̂ ∈ Rd and two neighboring databases Sn ∼ S ′
n of size n.

Algorithm 1: Private Tukey median

1 Output a random data point µ̂ ∈ [−2R, 2R]d sampled from a density

r(µ̂) ∝ e(1/2)εnDTukey(S,µ̂) .

The private Tukey median achieves the following near optimal guarantee, whose proof is

provided in §A.1. The accuracy of O(α) and sample complexity of n = Ω((1/α2)(d+log(1/ζ)))

cannot be improved even without privacy (cf. Corollary 2.2.1), and n = Ω̃(d/(αε)) is necessary

even without any corruption [129, Theorem 6.5].
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Theorem 5. Under the hypotheses of Corollary 2.2.1, there exists a universal constant

c > 0 such that if µ ∈ [−R,R]d, α ≤ min{c, R} and n = Ω((1/α2)(d + log(1/ζ)) +

(1/αε)d log(dR/ζα)), then Algorithm 1 is (ε, 0)-differentially private and achieves ∥µ̂−µ∥2 =

O(α) with probability 1− ζ.

The private Tukey median, however, is a conceptual algorithm since we cannot sample from

r(µ̂). The AFindTukey algorithm from [28] approximately finds the Tukey median privately.

This achieves O(α) accuracy with n = Ω̃(d3/2 log(1/δ)/(αε)+(1/α2)(d+log(1/ζ))), but it still

requires a runtime of O(npoly(d)). Alternatively, we can sample from an α-cover of [−2R, 2R]d,

which has O((dR/α)d) points. However, evaluating the Tukey depth of a point is an NP-hard

problem [9], requiring a runtime of Õ(nd−1) [156]. The runtime of the discretized private

Tukey median is Õ(n−1(dnR/α)d). Similarly, [36] introduced an exponential mechanism over

the α-cover with a novel utility function achieving the same guarantee as Theorem 5, but

this requires a runtime of O(n(dR/α)2d).

2.3 Efficient algorithms for private and robust mean estimation

A major challenge in making a robust estimation algorithm private is the high sensitivity

of the iterates as we show in §2.3.1. Instead, we propose making only the first and second

order statistics private, hence significantly reducing the sensitivity in §2.3.2. However, the

O(d) number of iterations is prohibitive because the privacy leakage compounds over those

iterations. We therefore propose PRIME (PRIvate and robust Mean Estimation), which

uses a matrix multiplicative weights approach to reduce the number of iterations down to

O((log d)2); see §2.3.3.
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Algorithm 2: Non-private robust mean estimation [153]
Input: S = {xi}ni=1, α ∈ (0, 1), S0 = [n]

1 for t = 1, . . . do

2 if ∥
∑

i∈St−1
(xi − µt−1)(xi − µt−1)

⊤ − I∥2 < Cα log(1/α) then
Output: µ̂ =

∑
i∈St−1

xi

3 else

4 µt ← (1/|St−1|)
∑

i∈St−1
xi

5 vt ← 1st principal direction of ( {(xi − µt)}i∈St−1)

6 Zt ← Unif([0, 1])

7 St ← St−1\ {i | i ∈ T2α for {τj = (v⊤t (xj − µt))
2}j∈St−1 and

τi ≥ Zt maxj∈St−1(v
⊤
t (xj − µt))

2}, where T2α is defined in Definition 2.3.1.

2.3.1 Background on robust mean estimation

Non-private robust mean estimation approaches, such as Algorithm 2, recursively apply a

filter: St = F (St−1). Given a dataset S = {xi}ni=1, the set St ⊆ [n] is updated starting with

S0 = [n]. At each step, the filter attempts to detect the corrupted data points and remove

them. The filter focuses on the direction of the current principal component and removes

data points with probability proportional to their variance, but only does so for those in the

largest nα subset of remaining points, defined as follows. The tie-breaking rule is not essential

for robust estimation, but is critical for proving differential privacy, as shown in §A.5.1.

Definition 2.3.1 (Subset of the largest α fraction). Given a set of scalar values {τi =

⟨V, (xi − µ)(xi − µ)⊤⟩}i∈S′ for a subset S ′ ⊆ [n], define the sorted list π of S ′ such that

τπ(i) ≥ τπ(i+1) for all i ∈ [|S ′| − 1]. When there is a tie such that τi = τj, it is broken by

π−1(i) ≤ π−1(j)⇔ xi,1 ≥ xj,1. Further ties are broken by comparing the remaining entries

of xi and xj, in an increasing order of the coordinate. If xi = xj ,then the tie is broken

arbitrarily. We define Tα = {π(1), . . . , π(⌈nα⌉)} to be the set of largest ⌈nα⌉ valued samples.

Removing data points with probability proportional to their variance ensures that we
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remove more corrupted samples than the clean samples, while reducing the covariance. Hence,

we do not remove more than αn clean samples (on average) before removing all the corrupted

ones. When the covariance is sufficiently reduced (line 2 in Algorithm 2), the following key

technical lemma ensures that our estimate is accurate.

Lemma 2.3.2 (Corollary of [73, Lemma 4.6]). Under Assumption 1, if n = Ω((d +

log(1/ζ))/(α2 log(1/α))), then with probability 1− ζ we have

∥µ(T )− µ∥2 = O

(√
α (∥M(T )− I∥2 + α log(1/α)) + α

√
log(1/α)

)
,

for any T ⊆ S such that
(
n−|T∩Sgood|

)
= O(αn), where M(T ) ≜ (1/n)

∑
i∈T (xi−µ(T ))(xi−

µ(T ))⊤, µ(T ) ≜ (1/|T |)
∑

i∈T xi, S denotes the entire (corrupted) dataset, and Sgood is the

original set of clean data, as defined in Assumption 1.

Using this lemma, we can show that this algorithm achieves the near-optimal sample

complexity that nearly matches that of Corollary 2.2.1 up to a log(1/α) factor.

Proposition 2.3.3 (Corollary of [153, Theorem 2.1]). Under assumption 1, Algorithm 2

achieves accuracy ∥µ̂− µ∥2 ≤ O(α
√

log(1/α)) with probability 0.9 if n ≥ Ω̃(d/α2) .

To get a differentially private robust mean, a naive attempt is to apply a standard output

perturbation mechanism to µ̂. However, this is challenging since the end-to-end sensitivity is

intractable. The standard recipe to circumvent this is to make the current “state” St private

at every iteration. Once St−1 is private (hence, public knowledge), making the next “state”

St private is simpler. We only need to analyze the sensitivity of a single step and apply some

output perturbation mechanism with (εt, δt). End-to-end privacy is guaranteed by accounting

for all these (εt, δt)’s using advanced composition [127]. This recipe has been quite successful,

for example, in training neural networks with (stochastic) gradient descent [182, 1, 124],

where the current state can be the optimization variable xt. However, for Algorithm 2, this

standard recipe fails, since in our case, state St is a set and has large sensitivity. Changing a

single data point in St−1 can significantly alter which (and how many) samples are filtered

out at that step because the principal direction vt can change dramatically.
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2.3.2 Making the mean and the principal component private

To reduce the sensitivity of intermediate iterates in Algorithm 2, we propose making private

only the mean µt and the top principal direction vt. To this end, we introduce DPrange

and DPfilter in Algorithm 3, which achieves the following guarantee. This follows from

Lemmas 2.3.5 and 2.3.7, and for completeness we provide a proof in §A.3.4.

Theorem 6. Algorithm 3 is (ε, δ)-differentially private if n = Ω̃((T 1/2/ε)(log(1/δ))3/2).

Under Assumption 1, there exists a universal constant c ∈ (0, 0.1) such that if α ≤ c,

n = Ω̃ ((d/α2) + d2.5 log(1/δ)/(εα1.5)) and T = Θ̃(d2/α), then Algorithm 3 achieves ∥µ̂ −

µ∥2 ≤ O(α
√

log(1/α)) with probability 0.9.

The first term O(d/α2) in the sample complexity is optimal (cf. Theorem 5), but there

is a factor of d gap in the second term because DPfilter runs for O(d) iterations in the

worst-case. According to the advanced composition (Lemma 2.3.4), each iteration is allowed

only a privacy budget of only (O(ε/
√
d log(1/δ)), O(δ/d)) to ensure the end-to-end guarantee

of (0.99ε, 0.99δ)-DP (line 3, Algorithm 3). Therefore, we introduce DPMMWfilter in

§2.3.3 to reduce the number of iterations to O((log d)2) and significantly decrease sample

complexity.

Lemma 2.3.4 (Composition theorem of [127, Theorem 3.4]). For ε ≤ 0.9, an end-to-end

guarantee of (ε, δ)-differential privacy is satisfied if a dataset is accessed k times, each with a

(ε/2
√

2k log(2/δ), δ/2k)-differential private mechanism.

Algorithm 3: Private iterative filtering
Input: S = {xi ∈ Rd}ni=1, range [−R,R]d, adversarial fraction α ∈ (0, 1/2), target

probability η ∈ (0, 1), number of iterations T ∈ Z+, target privacy (ε, δ)

1 (x̄, B)← DPrange({xi}ni=1, R, 0.01ε, 0.01δ) [Algorithm 14]

2 Clip the data points: x̃i ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]

3 µ̂← DPfilter({x̃i}ni=1, α, T, 0.99ε, 0.99δ) [Algorithm 4]

Output: µ̂
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2.3.2.1 Proof sketch and algorithm detail

DPrange, introduced in [139], returns a hypercube x̄ + [−B,B]d that is guaranteed to

include all uncorrupted samples, while preserving privacy. In the following lemma, we show

that DPrange is also robust to adversarial corruption. Such adaptive bounding of the

support is critical in privacy analysis of the subsequent steps. We clip all data points by

projecting all the points with Px̄+[−B/2,B/2]d(x) = argminy∈x̄+[−B/2,B/2]d ∥y − x∥2 to lie inside

the hypercube and pass them to DPfilter for filtering. The algorithm and a proof are

provided in §A.2. Perhaps surprisingly, there is no dependence in R for R > 1/δ, which is

achieved by utilizing the private histogram mechanism from [198, 37].

Lemma 2.3.5. DPrange(S,R, ε, δ) (Algorithm 14 in §A.2) is (ε, δ)-differentially private.

Under Assumption 1, DPrange(S,R, ε, δ) returns (x̄, B) such that if

n = Ω
(
(
√
d log(1/δ)/ε)min (log(dR/ζ), log(d/ζδ))

)
and α < 0.1, then all uncorrupted sam-

ples in S are in x̄+ [−B,B]d with probability 1− ζ.
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Algorithm 4: Differentially private filtering (DPfilter)

Input: S = {xi ∈ x̄+ [−B/2, B/2]d}ni=1, α ∈ (0, 1/2), T = Θ̃(dB2), (ε, δ)

1 S0 ← [n], ε1 ← min{ε, 0.9}/(4
√
2T log(2/δ)), δ1 ← δ/(8T )

2 for t = 1, . . . , T do

3 nt ← |St−1|+ Lap(1/ε1)

4 if nt < 3n/4 then

5 terminate

6 µt ← (1/|St−1|)
∑

i∈St−1
xi + Lap(2B/(n ε1))

7 λt ← ∥(1/n)
∑

i∈St−1
(xi − µt)(xi − µt)

⊤ − I∥2 + Lap(2B2d/(nε1))

8 if λt ≤ (C − 0.01)α log(1/α) then
Output: µt

9 vt ← top singular vector of Σt−1 ≜

1
n

∑
i∈St−1

(xi − µt)(xi − µt)
⊤ +N (0, (B2d

√
2 log(1.25/δ)/(nε1))

2Id2×d2)

10 Zt ← Unif([0, 1])

11 St ← St−1\ {i | i ∈ T2α for {τj = (v⊤t (xj − µt))
2}j∈St−1 and τi ≥ dB2 Zt}, where

T2α is defined in Definition 2.3.1.

In DPfilter, we make only the mean µt and the top principal direction vt private to

decrease sensitivity. The analysis is now more challenging since (µt, vt) depends on all past

iterates {(µj, vj)}t−1
j=1 and internal randomness {Zj}t−1

j=1. To decrease the sensitivity, we modify

the filter in line 11 to use the maximum support dB2 (which is data independent) instead

of the maximum contribution maxi(v
⊤
t (xi − µt))

2 (which is data dependent and sensitive).

While one data point can significantly change maxi(v
⊤
t (xi − µt))

2 and the output of one step

of the filter in Algorithm 2, the sensitivity of the proposed filter is bounded conditioned on

all past {(µj, vj)}t−1
j=1, as we show in the following lemma. This follows from the fact that

conditioned on (µj, vj), the proposed filter is a contraction. We provide a proof in §A.3.

Lemma 2.3.6. Let St(S) denote the resulting subset of samples after t iterations of the

filtering in DPfilter are applied to a dataset S using fixed parameters {(µj, vj, Zj)}tj=1.

Then, we have d△(St(S), St(S ′)) ≤ d△(S,S ′), where d△(S,S ′) ≜ max{|S \ S ′|, |S ′ \ S|}.
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Recall that two datasets are neighboring, i.e., S ∼ S ′, iff d△(S,S ′) ≤ 1. This lemma

implies that if two datasets are neighboring, then they are still neighboring after filtering with

the same parameters, no matter how many times we filter them. Hence, we can use standard

mechanisms in the Laplace mechanism for private µt (line 6) and in the private PCA for vt

(line 9). Analyzing the utility of this algorithm, we get the following guarantee, which follows

from Theorem 25 and Lemma A.6.3 in the appendix. Putting together Lemmas 2.3.5 and

2.3.7, we get the desired result in Theorem 6.

Lemma 2.3.7. DPfilter(S, α, T, ε, δ) is (ε, δ)-differentially private if n = Ω̃((T 1/2/ε)(log(1/δ))3/2).

Under the hypotheses of Theorem 6, DPfilter(S, α, T = Θ̃(B2d), ε, δ) achieves ∥µ̂− µ∥2 =

O(α
√

log(1/α)) with probability 0.9, if n = Ω̃(d/α2 + B2d2 log(1/δ)/(εα)) and B is large

enough such that the original uncorrupted samples are inside the hypercube x̄+ [−B/2, B/2]d.

2.3.3 PRIME: novel private and robust mean estimation algorithm

PRIvate and robust Mean Estimation (PRIME) replaces the DPfilter with the DPMMW-

filter of Algorithm 6, which uses a matrix multiplicative weights approach from [73] to

dramatically reduce the number of iterations (from Õ(d2) to O((log d)2)) and improves sample

complexity, as follows. We provide a proof in §A.5.
Algorithm 5: PRIvate and robust Mean Estimation (PRIME)

Input: S = {xi ∈ Rd}ni=1, range [−R,R]d, adversarial fraction α ∈ (0, 1/2), number

of iterations T1 = O(log d), T2 = O(log d), target privacy (ε, δ)

1 (x̄, B)← DPrange({xi}ni=1, R, 0.01ε, 0.01δ) [Algorithm 14 in §A.2]

2 Clip the data points: x̃i ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]

3 µ̂← DPMMWfilter({x̃i}ni=1, α, T1, T2, 0.99ε, 0.99δ) [Algorithm 6]

Output: µ̂

Theorem 7. PRIME is (ε, δ)-differentially private if n = Ω̃((1/ε) log(1/δ)). Under As-

sumption 1 there exists a universal constant c ∈ (0, 0.1) such that if α ≤ c, n = Ω̃((d/α2) +

(d3/2/(εα)) log(1/δ)), T1 = Ω(log d), and T2 = Ω(log d), then PRIME achieves ∥µ̂ − µ∥2 =
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O(α
√

log(1/α)) with probability 0.9. The notation Ω̃(·) hides logarithmic terms in d, R, and

1/α.

DPrange uses (0.01ε, 0.01δ) of the total privacy budget, and DPMMWfilter uses

the rest. The differential privacy guarantee of DPMMWfilter follows from the interactive

version of the algorithm provided in Algorithm 17 in §A.5.1, which explicitly shows how

many times we (privately) access the dataset. We interpret the main result in the following

remarks.

Remark 1. To achieve an error of O(α
√

log(1/α)), the first term Ω̃(d/α2 log(1/α)) is

necessary even if there is no corruption. The accuracy of O(α
√

log(1/α)) matches the lower

bound shown in [68] for any polynomial time statistical query algorithm, and it nearly matches

the information theoretical lower bound on robust estimation of O(α) up to a logarithmic

factor. This is the lowest error one can achieve even with infinite samples.

Remark 2. On the other hand, the second term of Ω̃(d3/2/(εα log(1/α))) in the sample

complexity has an extra factor of d1/2 compared to the optimal one achieved by exponential

time algorithms: private Tukey median (cf. Theorem 5), private hypothesis testing [36], and

Algorithm 8. It is an open question if this gap can be closed by a polynomial time algorithm.

The bottleneck is the spectral analysis of the covariance matrix, which is a private PCA in

DPfilter and private matrix multiplicative weights in DPMMWfilter (lines 14 and 15).

Such spectral analyses are crucial in filter-based robust estimators, as captured by Lemma 2.3.2.

Even for the simple task of privately computing the top principal component, the best

polynomial time algorithm requires O(d3/2) samples [80, 46, 209], and this sample complexity

is also necessary. A lower bound from [80, Corollary 25] shows that if n ≤ cd3/2/(α̃
√
log d) for

some constant c then for any (1, 1/d2)-differentially private estimator v̂ of the top principal

component v of the covariance matrix Σ, we have v⊤Σv− v̂⊤Σv̂ ≥ α̃ with probability 1− 1/d

when each sample is bounded by ∥xi∥2 = O(
√
d).

Remark 3. Matrix multiplicative weights were utilized in [73] to make robust mean

estimation faster using only O((log d)2) filtering steps. This is a significant improvement over
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O(d) iterations of previous filtering approaches [64]; we provide a detailed explanation in the

next section. This speed up is critical in achieving the desired sample efficiency since privacy

is leaked every time we access the data.

Remark 4. To boost the success probability to 1− ζ for some small ζ > 0, we need an

extra log(1/ζ) factor in the sample complexity to make sure the dataset satisfies the regularity

condition with probaibility ζ/2. Then we can run PRIME log(1/ζ) times and choose the

output of a run that satisfies n(s) > n− 10α and λ(s) ≤ Cα log(1/α) at termination.
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Algorithm 6: Differentially private filtering with matrix multiplicative weights

(DPMMWfilter)
Input: S = {xi ∈ x̄+ [−B/2, B/2]d}ni=1, α ∈ (0, 1/2), T1 = O(log(B

√
d)), T2 = O(log d),

privacy (ε, δ)

1 Initialize S(1) ← [n], ε1 ← ε/(4T1), δ1 ← δ/(4T1), ε2 ← min{0.9, ε}/(4
√
10T1T2 log(4/δ)),

δ2 ← δ/(20T1T2), a large enough constant C > 0

2 for epoch s = 1, 2, . . . , T1 do

3 λ(s) ← ∥M(S(s))− I∥2 + Lap(2B2d/(nε1))

4 n(s) ← |S(s)|+ Lap(1/ε1)

5 if n(s) ≤ 3n/4 then Output: ∅

6 if λ(s) ≤ C α log(1/α) then
Output: µ(s) ← (1/|S(s)|)

(∑
i∈S(s) xi

)
+N (0, (2B

√
2d log(1.25/δ1)/(n ε1))

2Id×d)

7 α(s) ← 1/(100(0.1/C + 1.01)λ(s))

8 S
(s)
1 ← S(s)

9 for t = 1, 2, . . . , T2 do

10 λ
(s)
t ← ∥M(S

(s)
t )− I∥2 + Lap(2B2d/(nε2))

11 if λ(s)t ≤ 0.5λ
(s)
0 then

12 terminate epoch

13 else

14 Σ
(s)
t ←M(S

(s)
t ) +N (0, (2B2d

√
2 log(1.25/δ2)/(nε2))

2Id2×d2)

15 U
(s)
t ← (1/Tr(exp(α(s)

∑t
r=1(Σ

(s)
r − I)))) exp(α(s)

∑t
r=1(Σ

(s)
r − I))

16 ψ
(s)
t ←

〈
M(S

(s)
t )− I, Ut

(s)
〉
+ Lap(2B2d/(nε2))

17 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

18 S
(s)
t+1 ← S

(s)
t

19 else

20 Z
(s)
t ← Unif([0, 1])

21 µ
(s)
t ← (1/|S(s)

t |)
(∑

i∈St
xi
)
+N (0, (2B

√
2d log(1.25/δ2)/(n ε2)Id×d)

2)

22 ρ
(s)
t ← DP-1Dfilter(µ(s)t , U

(s)
t , α, ε2, δ2, S

(s)
t ) [Algorithm 7]

23 S
(s)
t+1 ← S

(s)
t \ {i | i ∈ T2α for {τj = (xj − µ(s)t )⊤U

(s)
t (xj − µ(s)t )}

j∈S(s)
t

and

τi ≥ ρ(s)t Z
(s)
t }, where T2α is defined in Definition 2.3.1.

24 S(s+1) ← S
(s)
t

Output: µ(T1)
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2.3.3.1 Matrix multiplicative weights and a proof sketch of Theorem 7

We now provide the intuition for using matrix multiplicative weights in line 15 of Algorithm 6

and a proof sketch of Theorem 7, and we refer to §A.5 for a formal proof. DPMMWfilter

runs T1 epochs in the outer-loop and T2 iterations at each epoch in the inner-loop. The

inner-loop ensures that the covariance strictly decreases after T2 iterations. The outer-loop

ensures that the covariance decreases sufficiently after T1 epochs. Lemma 2.3.2 ensures that

this is sufficient for robust estimation.

Proof sketch. The next lemma guarantees that (i) we are guaranteed to have more corrupted

samples removed than the clean samples (in expectation) at every iteration t, and (ii) we

get a decreasing covariance in its spectral norm at every epoch s. We provide a proof of this

lemma in §A.5.3. Formally, we define Sgood as the original set of n clean samples (as defined in

Assumption 1) and Sbad as the set of corrupted samples that replace αn of the clean samples.

The (rescaled) covariance is denoted by M(S(s)) ≜ (1/n)
∑

i∈S(s)(xi − µ(S(s)))(xi − µ(S(s)))⊤,

where µ(S(s)) ≜ (1/|S(s)|)
∑

i∈S(s) xi denotes the mean.

Lemma 2.3.8 (informal version of Lemma A.5.3). Under the hypotheses of Lemma A.5.3, if

n = Ω̃(d/α2 + d3/2 log(1/δ)/(εα)) and |S(s)
t ∩ Sgood| ≥ (1− 10α)n then there exists a constant

C > 0 such that for each epoch s and iteration t,

• in expectation, more corrupted samples are removed than the uncorrupted samples, i.e.,

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|, and

• for each epoch s, if ∥M(S(s))− I∥2 ≥ C α log(1/α) then the s-th epoch terminates after

O(log d) iterations and outputs S(s+1) such that ∥M(S(s+1))− I∥2 ≤ 0.98∥M(S(s))− I∥2
with probability 1−O(1/(log d)2).

In s = O(log0.98((Cα log(1/α))/∥M(S(1))− I∥2)) epochs, this lemma guarantees that we

find a candidate set S(s) of samples with ∥M(S(s)− I∥2 ≤ Cα log(1/α). Lemma 2.3.2 ensures

that we get the desired bound of ∥µ(S(s))−µ∥2 = O(α
√
log(1/α)) as long as S(s) has enough
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clean data, i.e., |S(s) ∩Sgood| ≥ n(1−α). Since Lemma 2.3.8 gets invoked at most O((log d)2)

times, we can take a union bound, and the following argument conditions on the good events

in Lemma 2.3.8 holding, which happens with probability at least 0.99. To turn the average

case guarantee of Lemma 2.3.8 into a constant probability guarantee, we apply the optional

stopping theorem. Recall that the s-th epoch starts with a set S(s) and outputs a filtered

set S(s)
t at the t-th inner iteration. We measure the progress by by summing the number of

clean samples removed up to epoch s and iteration t and the number of remaining corrupted

samples, defined as d(s)t ≜ |(Sgood ∩ S(1)) \ S(s)
t |+ |S

(s)
t \ (Sgood ∩ S(1))|. Note that d(1)1 = αn,

and d(s)t ≥ 0. At each epoch and iteration, we have

E[d(s)t+1 − d
(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)t ] = E

[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

from part 1 of Lemma 2.3.8. Hence, d(s)t is a non-negative super-martingale. By the optional

stopping theorem, at stopping time, we have E[d(s)t ] ≤ d
(1)
1 = αn. By the Markov inequality,

d
(s)
t is less than 10αn with probability 0.9, i.e., |S(s)

t ∩Sgood| ≥ (1− 10α)n. The desired bound

in Theorem 7 follows from Lemma 2.3.2.

Matrix multiplicative weights (MMWs). We are left to prove that the MMW filtering

(lines 9-23 in DPMMWfilter) satisfies our main technical result in Lemma 2.3.8. Recall

that PCA-based filtering in DPfilter requires O(d) iterations in the worst case since it

checks only one direction at a time. If O(d) samples are corrupted by each taking a clean

sample and arbitrarily changing in one distinct coordinate, then it takes O(d) iterations

filtering them out one by one.

The MMW-based approach, pioneered in [73] and generalized to covariance estimation

[154] and heavy-tailed estimation [105], filters out multiple directions jointly. For simplicity,

we present the proof sketch when privacy is not required (ε =∞) and give the full proof in

the general (ε <∞) setting in §A.5.2. Define U (s)
t via the matrix multiplicative update:

U
(s)
t =

1

Tr
(
exp(α(s)

∑
r∈[t](Σ

(s)
r − I))

) exp(α(s)
∑
r∈[t]

(Σ(s)
r − I)

)
,
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where Σ
(s)
r = M(S

(s)
t ) = (1/n)

∑
i∈S(xi − µ(S

(s)
t ))(xi − µ(S

(s)
t ))⊤ since ε = ∞. As U (s)

r ’s

are multiplicative weight updates for online constrained linear optimization with objective

⟨Σ(s)
r , U⟩ at the r-th iteration, it is known from [8], for example, that for the choice of α(s) that

satisfies α(s)(Σ
(s)
r − I) ⪯ I, the following regret bound in Eq. (2.2) is achieved (Lemma A.6.13):

∥∥∥∑
r∈[t]

(
Σ(s)

r − I
)∥∥∥

2
= max

U,∥U∥∗=1

〈∑
r∈[t]

Σ(s)
r − I, U

〉
≤

∑
r∈[t]

〈
Σ(s)

r − I, U (s)
r

〉
+
∑
r∈[t]

α(s)∥Σ(s)
r − I∥2

〈
U (s)
r ,
∣∣Σ(s)

r − I
∣∣〉+ log d

α(s)

≤
∑
r∈[t]

〈
Σ(s)

r − I, U (s)
r

〉
+

1

100

∑
r∈[t]

〈∣∣Σ(s)
r − I

∣∣ , U (s)
r

〉
+ 200 log(d)∥M(S(s))− I∥2 , (2.2)

where ∥A∥∗ =
∑

i σ(A) is the nuclear norm, | · | of a symmetric matrix is defined by its

eigenvalue decomposition as |Udiag([λi]di=1)V
⊤| = Udiag([|λi|]di=1)V

⊤, and we used the fact

that Σ(s)
r+1 ⪯ Σ

(s)
r is a decreasing sequence (Lemma A.6.1) and 1/200 ≤ α(s)∥Σ(s)−I∥2 ≤ 1/100.

By carefully designing the private filtering algorithm in DP-1Dfilter, we make sufficient

progress in each iteration in reducing the covariance, as shown in Lemma A.5.4. This gives

⟨Σ(s)
r −I, U

(s)
r ⟩ ≤ 0.95∥M(S

(s)
1 )−I∥2+2cα log 1/α and ⟨|Σ(s)

r −I|, U (s)
r ⟩ ≤ 0.95∥M(S

(s)
1 )−I∥2+

2cα log 1/α. For details of this analysis, we refer to the proof of Lemma A.5.5 in §A.5.3.3.

∥∥∥Σ(s)
T2
− I
∥∥∥
2
≤ 1

T2

∥∥∥ ∑
r∈[T2]

(
Σ(s)

r − I
)∥∥∥

2

≤ 0.96 ∥Σ(s)
1 − I∥2 + 2 c α log 1/α +

200 log d

T2
∥Σ(s)

1 − I∥2

≤ 0.98 ∥Σ(s)
1 − I∥2 ,

where the first inequality follows from the monotonicity of Σ(s)
r and the last one from the fact

that stopping criteria of ∥Σ(s)−I∥2 ≤ Cα log(1/α) have not been met so far and T2 = O(log d).

Hence, the MMW approach ensures that O(log d) steps are sufficient for the spectral norm of

the covariance to decrease strictly.
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Algorithm 7: Differentially private 1D-filter (DP-1Dfilter)
Input: µ, U , α ∈ (0, 1/2), target privacy (ε, δ), S = {xi ∈ x̄+ [−B/2, B/2]d}

1 Set τi ← (xi − µ)⊤U(xi − µ) for all i ∈ S

2 Set ψ̃ ← (1/n)
∑

i∈S(τi − 1) + Lap(B2d/nε))

3 Compute a histogram over geometrically sized bins

I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B
2d)−1, 2log(B

2d)]

hj ←
1

n
· |{i ∈ S | τi ∈ [2−3+j, 2−2+j)}| , for all j = 1, . . . , 2 + log(B2d)

4 Compute a privatized histogram h̃j ← hj +N (0, (4
√

2 log(1.25/δ)/(nε))2), for all

j ∈ [2 + log(B2d)]

5 Set τ̃j ← 2−3+j, for all j ∈ [2 + log(B2d)]

6 Find the largest ℓ ∈ [2 + log(B2d)] satisfying
∑

j≥ℓ(τ̃j − τ̃ℓ) h̃j ≥ 0.31ψ̃

Output: ρ = τ̃ℓ

2.3.3.2 Novel private DP-1Dfilter

Once U (s)
t is obtained from the proposed MMW approach, we run a filter (DPMMWfilter

line 23) to remove suspected corrupted samples. The idea is to remove suspected corrupted

samples by their contribution to the covariance matrix as projected onto U (s)
t , denoted as

τi for i = 1, 2, . . . , n. A corresponding non-private filter in [73, Algorithm 9] requires O(n)

iterations of 1Dfilter at each inner-loop, a prohibitively large number of accesses to the

data under our private setting. Therefore, we introduce a novel private DP-1Dfilter in

Algorithm 7 that accesses the data only once.

Lemma 2.3.9 (Private 1-D filter: picking threshold privately). Algorithm DP-1Dfilter(µ, U, α, ε, δ, S)

running on a dataset {τi = (xi − µ)⊤U(xi − µ)}i∈S is (ε, δ)-DP. Define ψ ≜ 1
n

∑
i∈S(τi − 1).
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If τi’s satisfy

1

n

∑
i∈Sgood∩T2α∩S

τi ≤ ψ/1000

1

n

∑
i∈Sgood∩S

(τi − 1) ≤ ψ/1000 ,

and n ≥ Ω̃

(
B2d
√

log(1/δ)

εα

)
, then DP-1Dfilter outputs a threshold ρ such that with probability

1−O(1/ log3 d),

1

n

∑
τi<ρ

(τi − 1) ≤ 0.75ψ and (2.3)

2(
∑

i∈Sgood∩T2α

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ}) ≤

∑
i∈Sbad∩T2α

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} . (2.4)

DP-1Dfilter finds a private threshold ρ such that when a randomized filter is applied

with the scale of ρ, we cut enough samples to make progress in each iteration (Eq. (2.3)) and

while ensuring that we do not remove too many uncorrupted samples (Eq. (2.4)). Finding

such a threshold is straightforward in a non-private setting; one can choose the largest ρ such

that (2.3) holds. The regularity of the uncorrupted samples ensures that the safety condition

is also met.

We use a private histogram of the scores to approximate this threshold. However, a

standard fixed size binning fails: when evaluating the contribution of the points below (or

above) threshold, the error of the Gaussian mechanism accumulates over O(B2d) bins. This

introduces O(B2d) error in approximating (1/n)
∑

τi<ρ(τi − 1). Instead, we geometrically

increase bin sizes using only O(logB2d) bins; thus, the approximation error is now within

Õ(d/ϵn). This introduces a multiplicative error in our quantization, which luckily fits well

with our objective in Eq. (2.3). This, together with our regularity of uncorrupted samples,

will satisfy our safety condition in Eq. (2.4).
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2.4 Exponential time approaches for sub-Gaussian distributions

The existing result for robust and private mean estimation in [36] strictly requires the

uncorrupted samples to be drawn from a Gaussian distribution, and the run-time is exponential

in the dimension. The technique heavily relies on covering the parameters of Gaussian

distributions with an α-cover, which cannot be extended to any non-parametric family of

distributions. To this end, we introduce a new family of (exponential time) algorithms that

can provide near optimal sample complexity for both sub-Gaussian distributions and second

moment bounded distributions. We provide a proof in §A.7.2.

Theorem 8 (Exponential time algorithm for sub-Gaussian distributions). Algorithm 8 is

(ε, δ)-differentially private if n = Ω(d1/2 log(1/δ)/(εα
√
log(1/α))). Under Assumption 1, if

n = Ω
( d+ log(1/ζ)

α2 log(1/α)
+
d log(dR/α) + log(1/ζ)

εα
+

√
d log(1/δ)min{log(dR/ζ), log(d/ζδ}}

ε

)
,

this algorithm achieves ∥µ̂− µ∥2 = O(α
√
log(1/α)) with probability 1− ζ.

The main idea is to use the resilience property of the samples to (i) check that the

uncorrupted portion of the samples is drawn from the distribution of interest, and (ii) bound

the sensitivity of the subsequent exponential mechanism.

Remark 1. In an attempt to design efficient algorithms for robust and private mean estimation,

[60] proposed an algorithm with a mis-calculated sensitivity, which can result in violating the

privacy guarantee. Our approach for checking the resilience can be used as a pre-processing

step to ensure the desired sensitivity bound is met, but at the cost of exponential run-time.

Definition 2.4.1 (Resilience (Definition 1 in [186])). A set of points {xi}i∈S lying in Rd is

(σ, α)-resilient around a point µ if, for all subsets T ⊂ S of size at least (1− α)|S|,∥∥∥ 1

|T |
∑
i∈T

(xi − µ)
∥∥∥
2
≤ σ.

We define R(S) as a surrogate for resilience. The intuition is that if the dataset S indeed

consists of a 1− α fraction of independent samples from the promised class of distributions,

the goodness score R(S) will be close to the resilience property of the good data.
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Definition 2.4.2 (Goodness of a set). For µ(S) = (1/|S|)
∑

i∈S xi, let us define

R(S) ≜ min
S′⊂S,|S′|=(1−2α)|S|.

max
T⊂S′,|T |=(1−α)|S′|.

∥µ(T )− µ(S ′)∥2 . (2.5)

Algorithm 8 first checks if the resilience of the dataset matches that of the promised

distribution. The data is pre-processed with DPrange to ensure we can check R(S) privately.

Once resilience is cleared, we can safely use the exponential mechanism based on score function

d(µ̂, S), which is defined in Definition 2.4.3, to select an approximate mean µ̂. The choice of

the sensitivity critically relies on the fact that resilient datasets have small sensitivity. As the

loss for exponential mechanism, we propose the distance between a robust projected mean

and the candidate µ̂ defined as follows.

Definition 2.4.3. For a set of data {xi}i∈S lying in Rd, for any v ∈ Sd−1, define T v to be

the 3α|S| points with the largest v⊤xi value, Bv to be the 3α|S| points with the smallest v⊤xi

value, and Mv = S \ (T v ∪ Bv). Define

d(µ̂, S) ≜ max
v∈Sd−1

∣∣v⊤ (µ(Mv)− µ̂)
∣∣ .

Run-time. Computing R(S) exactly can take O(deΘ(n)) operations. The exponential

mechanism implemented with α-covering for µ̂ and a constant covering for v can take

O(nd(R/α)d) operations.
Algorithm 8: Exponential-time private and robust mean estimation

Input: S = {xi}i∈[n], α ∈ (0, 1/2), R, (ε, δ)

1 (x̄, B)← DPrange({xi}ni=1, R, (1/3)ε, (1/3)δ) [DPrange-ht(·) for hevay-tail]

2 Project the data points onto the ball: x̃i ← PB√
dB/2(x̄)

(xi), for all i ∈ [n]

3 R̂(S)← R(S) + Lap(3Bd1/2/(nε))

4 if R̂(S) > 2α
√
log(1/α) then Output: ∅ [R̂(S) > 2cζ

√
α for hevay-tail]

5 else Output: a randomly drawn point µ̂ ∈ [−2R, 2R]d sampled from a density

6 r(µ̂) ∝ e−(1/(24
√

log(1/α)))ε n d(µ̂,S) [e−(εn
√
α/(24cζ))d(µ̂,S) for heavy-tail]

7 where d(µ̂, S) is defined in Definition 2.4.3
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2.5 Heavy-tailed distributions: algorithm and analysis

We consider distributions with bounded covariance as defined in Assumption 2. Under these

assumptions, Algorithm 8 achieves near optimal guarantees but takes exponential time. The

dominant term in the sample complexity Ω̃(d/(εα)) cannot be improved as it matches that

of the optimal non-robust private estimation [135]. The accuracy O(
√
α) cannot be improved

as it matches that of the optimal non-private robust estimation [73]. We provide a proof in

§A.7.1.

Theorem 9 (Exponential time algorithm for covariance bounded distributions). If n =

Ω(d1/2 log(1/δ)/(εα)), Algorithm 8 is (ε, δ)-differentially private. Under Assumption 2, if

n = Ω((d log(dR/α))/(εα) + (1/ε)d1/2 log3/2(1/δ)min{log(dR), log(d/δ)}) ,

this algorithm achieves ∥µ̂− µ∥2 = O(
√
α) with probability 0.9.

We propose an efficient algorithm PRIME-ht and show that it achieves the same optimal

accuracy but at the cost of increased sample complexity of O(d3/2 log(1/δ)/(εα)). In the

first step, we need increase the radius of the ball to O(
√
d/α) to include a 1 − α fraction

of the clean samples, where DPrange-ht returns B = O(1/
√
α) and B√dB/2(x̄) is a ℓ2-ball

of radius
√
dB/2 centered at x̄. This is followed by a matrix multiplicative weight filter

similar to DPMMWfilterr but the parameter choices are tailored for covariance bounded

distributions. We provide a proof in §A.8.2.

Theorem 10 (Efficient algorithm for covariance bounded distributions). PRIME-ht is (ε, δ)-

differentially private if n = Ω̃((1/ε) log(1/δ)). Under Assumption 2 there exists a universal

constant c ∈ (0, 0.1) such that if α ≤ c, and n = Ω̃((d3/2/(εα)) log(1/δ)), T1 = Ω(log(d/α)),

and T2 = Ω(log d), then PRIME-ht achieves ∥µ̂− µ∥2 = O(α1/2) with probability 0.9. The

notation Ω̃(·) hides logarithmic terms in d, R, and 1/α.

Remark 1. To boost the success probability to 1−ζ for some small ζ > 0, we will randomly

split the data into O(log(1/ζ)) subsets of equal sizes, and run Algorithm 9 to obtain a mean
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estimation from each of the subset. Then we can apply multivariate “mean-of-means” type

estimator [162] to get ∥µ̂− µ∥2 = O(α1/2) with probability 1− ζ.
Algorithm 9: PRIvate and robust Mean Estimation for covariance bounded distri-

butions (PRIME-ht)
Input: S = {xi ∈ Rd}ni=1, range [−R,R]d, adversarial fraction α ∈ (0, 1/2), number

of iterations T1 = O(log(d/α)), T2 = O(log d), target privacy (ε, δ)

1 (x̄, B)← DPrange-ht({xi}ni=1, R, 0.01ε, 0.01δ) [Algorithm 18 in §A.8]

2 Project the data onto the ball: x̃i ← PB√
dB/2(x̄)

(xi), for all i ∈ [n]

3 µ̂← DPMMWfilter-ht({x̃i}ni=1, α, T1, T2, 0.99ε, 0.99δ) [Algorithm 19 in §A.8]

Output: µ̂

2.6 Discussion

Differentially private mean estimation is brittle against a small fraction of the samples being

corrupted by an adversary. We show that robustness can be achieves without any increase in

the sample complexity by introducing a novel mean estimator. The innovation is in leveraging

the resilience property of well-behaved distributions in an innovative way to not only find

robust mean (which is the typical use case of resilience) but also bound sensitivity for optimal

privacy guarantee. However, this algorithm takes an exponential time. We therefore propose

an efficient algorithm that achieves the optimal target accuracy at the cost of an increase of

sample complexity. With appropriately chosen parameters, we show that our exponential time

approach achieves near-optimal guarantees for both sub-Gaussian and covariance bounded

distributions, and our efficient approach achieves target optimal accuracy but at the cost of

an extra d1/2 factor in the sample complexity.

There are several directions for improving our results further and applying the framework

to solve other problems. PRIME provides a new design principle for private and robust

estimation. This can be more broadly applied to fundamental statistical analyses such as

robust covariance estimation [62, 64, 154] robust PCA [145, 121], and robust linear regression

[143, 70].
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PRIME could be improved in a few directions. First, the sample complexity of Ω̃((d/(α2 log(1/α)))+

(d3/2/(εα log(1/α))) log(1/δ)) in Theorem 7 is suboptimal in the second term. Improving

the d3/2 factor requires bypassing differentially private singular value decomposition, which

seems to be a challenging task. However, it might be possible to separate the log(1/δ)

factor from the rest of the terms and get an additive error of the form Ω̃((d/(α2 log(1/α))) +

(d3/2/(εα log(1/α))) + (1/ε) log(1/δ)). This requires using Laplace mechanism in private

MMW (line 15 Algortihm 6). Secondly, the time complexity of PRIME is dominated by

computation time of the matrix exponential in (line 15 Algortihm 6). Total number of

operations scale as Õ(d3 + nd2). One might hope to achieve Õ(nd) time complexity using

approximate computations of τj’s using techniques from [73]. This does not improve the

sample complexity, as the number of times the dataset is accessed remains the same. Finally,

for (non-robust) private mean estimation, CoinPress provides a practical improvement in

the small sample regime by progressively refining the search space [32]. The same principle

could be applied to PRIME to design a robust version of CoinPress.
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Chapter 3

HPTR: A UNIFYING FRAMEWORK FOR DIFFERENTIALLY
PRIVATE AND ROBUST ESTIMATION

3.1 Introduction

Estimating a parameter of a distribution from i.i.d. samples is a canonical problem in statistics.

For such problems, characterizing the computational and statistical cost of ensuring differential

privacy (DP) has gained significant interest with the rise of DP as the de facto measure

of privacy. This is spearheaded by exciting and foundational algorithmic advances, e.g.,

[25, 139, 129, 135, 40]. However, the computational efficiency of these algorithms often comes

at the cost of requiring superfluous assumptions that are not necessary for statistical efficiency,

such as known bounds on the parameters or knowledge of higher-order moments. Without

such assumptions, the optimal sample complexity remains unknown even for canonical

statistical estimation problems under differential privacy. Further, each algorithm needs to

be customized to those assumptions or to the problem instances.

We take an alternative route of focusing only on the statistical cost of differential privacy

without concerning computational efficiency. Our goal is to introduce a general unifying

framework that (1) can be readily applied to each problem instance, (2) provides a tight

characterization of the statistical complexity involved, and (3) requires minimal assumptions.

Achieving this goal critically relies on three key ingredients: the exponential mechanism

introduced in [164], robust statistics, and the Propose-Test-Release mechanism introduced in

[77]. We first explain these three components of our approach, and then demonstrate the

utility of our proposed framework, called High-dimensional Propose-Test-Release (HPTR), in

canonical example problems of mean estimation, linear regression, covariance estimation, and

principal component analysis.
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Exponential mechanism and sensitivity. Differential privacy (DP) is an agreed upon

measure of privacy that provides plausible deniability to the individual entries. Given a dataset

S of size n and its empirical distribution p̂S = (1/n)
∑

xi∈S δxi
, its neighborhood is defined as

NS = {S ′ : |S ′| = |S|, dTV(p̂S, p̂S′) ≤ 1/n}, which is a set of datasets at Hamming distance1

at most one from S, and dTV(·) is the total variation. Plausible deniability is achieved by

introducing the right amount of randomness. A randomized estimator θ̂(S) is said to be (ε, δ)-

differentially private for some target ε ≥ 0 and δ ∈ [0, 1] if P(θ̂(S) ∈ A) ≤ eεP(θ̂(S ′) ∈ A) + δ

for all neighboring datasets S, S ′ and all measurable subset A ⊆ Rp [78]. Consider a binary

hypothesis testing on two hypotheses, H0, where the estimate came from a dataset S, and

H1, where the the estimate came from a dataset S ′ that is a neighbor of S. The DP condition

with a sufficiently small (ε, δ) ensures that an adversary cannot succeed in this test with high

confidence [127], which provides plausible deniability.

The sensitivity plays a crucial role in designing DP estimators. Consider an example

of mean estimation, where the error is measured in the Mahalanobis distance defined as

Dp(µ̂) = ∥Σ−1/2
p (µ̂ − µp)∥, where µp and Σp are the mean and covariance of the sample-

generating distribution p. This is a preferred error metric since it has unit variance in

all directions and is invariant to a linear transformation of the samples. A corresponding

empirical loss is Dp̂S(µ̂) = ∥Σ
−1/2
p̂S

(µ̂−µp̂S)∥. The exponential mechanism from [164] produces

an (ε, 0)-DP estimate µ̂ by sampling from a distribution that approximately and stochastically

minimizes this empirical loss:

µ̂ ∼ 1

Z(S)
e−

ε
2∆

Dp̂S
(µ̂) ,

where Z(S) =
∫
exp{−(ε/2∆)Dp̂S(µ̂)dµ̂. The sensitivity is defined as ∆ := maxµ̂,S,S′∈NS

|Dp̂S(µ̂)−

Dp̂S′ (µ̂)|, which is the influence of one data point on the loss. From this definition, the (ε, 0)-DP

guarantee follows immediately (e.g., Lemma 3.2.3).

Using the exponential mechanism is crucial in HPTR for two reasons: adaptivity and

1There are two notions of a neighborhood in DP, which are equally popular. We use the one based on
exchanging an entry, but all the analyses can seamlessly be applied to the one that allows for insertion and
deletion of an entry.
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flexibility. First, it naturally adapts to the geometry of the problem, which is encoded in the

loss. For example, a more traditional Gaussian mechanism [79] needs to estimate Σp privately

in order to add a Gaussian noise tailored to that estimated Σp, which increases sample

complexity significantly. On the other hand, the exponential mechanism seamlessly adapts to

Σp without explicitly and privately estimating it. Further, the exponential mechanism allows

us significant flexibility to design different loss functions, some of which can dramatically

reduce the sensitivity. Discovering such a loss function is the main focus of this chapter.

One major challenge is that the sensitivity is unbounded when the support of the distri-

bution is unbounded. A common solution is to privately estimate a bounded domain that

the samples lie in and use it to bound the sensitivity (e.g., [139, 129, 160]). We propose a

fundamentally different approach using robust statistics.

Robust statistics and resilience. The resilience (also known as stability) defined in [186]

plays a critical role in robust statistics. For the mean, for example, a dataset S is said to

be (α, ρ)-resilient for some α ∈ [0, 1] and ρ > 0 if for all v ∈ Rd with ∥v∥ = 1 and all subset

T ⊆ S of size at least |T | ≥ αn,∣∣ ⟨v, µp̂T ⟩ − ⟨v, µp̂S⟩
∣∣ ≤ ρ

α
. (3.1)

A more precise statement is in Definition 3.3.2. This measures how resilient the empirical

mean is to subsampling or deletion of a fraction of the samples. This resilience is a central

concept in robust statistical estimation when a fraction of the dataset is arbitrarily corrupted

by an adversary [186, 217]. We show and exploit the fact that resilience is fundamentally

related to the sensitivity of robust statistics.

For each direction v ∈ Rd with ∥v∥ = 1, we construct a robust mean of a one-dimensional

projected dataset, also known as trimmed mean, Sv = {⟨v, xi⟩ ∈ R}xi∈S, as follows. For

some α ∈ [0, 1/2), remove αn data points corresponding to the largest entries in Sv and also

remove the αn smallest entries. The mean of the remaining (1− 2α)n points is the robust

one-dimensional mean, which we denote by ⟨v, µ(robust)
p̂v

⟩ ∈ R. From the resilience above, we

know that the mean of the removed top part is upper bounded by ⟨v, µp̂S⟩+ ρ/α. The mean
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of the removed bottom part is lower bounded by ⟨v, µp̂S⟩ − ρ/α. Hence, the effective support

of this robust one-dimensional mean estimator is upper and lower bounded by the same.

This can be readily translated into a bound in sensitivity of the estimate, ⟨v, µ(robust)
p̂v

⟩ (e.g.,

Lemma 3.3.11). A similar sensitivity bound holds for the robust one-dimensional variance

estimator, v⊤Σ(robust)
p̂v

v, defined similarly.

We propose an approach that critically relies on this observation that one-dimensional

robust statistics have low sensitivity on resilient datasets, i.e., datasets satisfying the resilience

property with small ρ.

This suggests that if we can design a score function that only depends on one-dimensional

robust statistics of the data, it might inherit the low sensitivity of those robust statistics. To

this end, we first transform the target error metric into an equivalent expression that only

depends on one-dimensional (population) mean, ⟨v, µp⟩, and variance, v⊤Σpv, i.e.,

∥Σ−1/2
p (µ̂− µp)∥ = max

v∈Rd,∥v∥=1

⟨v, µ̂⟩ − ⟨v, µp⟩√
v⊤Σp v

,

which follows from Lemma 3.3.1. Next, we replace the population statistics with robust empiri-

cal ones to define a new empirical loss, Dp̂S(µ̂) = maxv∈Rd,∥v∥=1(⟨v, µ̂⟩−⟨v, µ
(robust)
p̂v

⟩)/
√
v⊤Σ

(robust)
p̂v

v.

Precise definitions of these robust statistics can be found in Eq. (3.5). For resilient datasets,

such a score function has a dramatically smaller sensitivity compared to those that rely on

high-dimensional robust statistics. For mean estimation under a sub-Gaussian distribution,

the sensitivity of the proposed loss is Õ(1/n), whereas a loss using a high-dimensional robust

statistics has Ω(
√
d/n) sensitivity.

Such an improved sensitivity immediately leads to a better utility guarantee of the

exponential mechanism. We explicitly prescribe such loss functions for the canonical problems

of mean estimation, linear regression, covariance estimation, and principal component analysis.

This leads to near-optimal utility in most cases and improves upon the state-of-the-art in

others, as we demonstrate in Section 3.1.1. Further, this approach can potentially be more

generally applied to a much broader class of problems. One remaining challenge is that the

tight sensitivity bound we provide holds only for a resilient dataset. To reject bad datasets,
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we adopt the Propose-Test-Release (PTR) framework pioneered in the seminal work of [77].

Propose-Test-Release and local sensitivity. The tight sensitivity bound we provide

on the proposed exponential mechanism is local in the sense that it only holds for resilient

datasets. However, differential privacy must be guaranteed for any input, whether it is

resilient (with desired level of α and ρ) or not. We adopt Propose-Test-Release introduced

in [77] to handle such locality of sensitivity. In the first step, one proposes an upper bound

on the sensitivity of the loss DS(θ̂), determined by the resilience of the dataset, which in

turn is determined solely by the distribution family of interest and the target error rate. In

the second step, one tests if the combination of the given dataset S, sensitivity bound ∆,

and the exponential mechanism with loss DS(θ̂) satisfy the DP conditions. A part of the

privacy budget is used to test this in a differential private manner, such that the subsequent

exponential mechanism can depend on the result of this test, i.e., we only proceed to the

third step if S passes the test. Otherwise, the process stops and outputs a predefined symbol,

⊥. In the third step, one releases the DP estimate via the exponential mechanism. This

ensures DP for any input S. We are adopting the Propose-Test-Release mechanism pioneered

in [77], which we explain in detail in Section 2.1.1. The resulting framework, which we call

High-dimensional Propose-Test-Release (HPTR) is provided in Section 3.1.2.

Contributions. We introduce a novel (computationally inefficient) algorithm for differentially

private statistical estimation, with the goal of characterizing the achievable sample complexity

for various problems with minimal assumptions. The proposed framework, which we call

High-dimensional Propose-Test-Release (HPTR), makes a fundamental connection between

differential privacy and robust statistics, thus achieving a sample complexity that significantly

improves upon other state-of-the-art approaches. HPTR is a generic framework that can be

seamlessly applied to various statistical estimation problems, as we demonstrate for mean

estimation, linear regression, covariance estimation, and principal component analysis. Further,

our analysis technique, which requires minimal assumptions, also seamlessly generalizes to all

problem instances of interest.
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HPTR uses three crucial components: the exponential mechanism, robust statistics, and

the Propose-Test-Release mechanism from [77]. Building upon the inherent adaptivity and

flexibility of the exponential mechanism, we propose using a novel loss function (also called a

score function in a typical design of exponential mechanisms) that accesses the data only

via one-dimensional robust statistics. The use of 1-D robust statistics is critical, because it

dramatically reduces the sensitivity. We prove this sensitivity bound using the fundamental

concept of resilience, which is central in robust statistics. This novel robust exponential

mechanism is incorporated within the PTR framework to ensure that differential privacy is

guaranteed on all input datasets, including those that are not necessarily compliant with the

statistical assumptions. One byproduct of using robust statistics is that robustness comes

for free. HPTR is inherently robust to adversarial corruption of the data and achieves the

optimal robust error rate under standard data corruption models.

We present informal version of our main theoretical results in Section 3.1.1. We present

HPTR algorithm in detail in Section 3.1.2. We provide a sketch of the proof and the

main technical contributions in Section 3.1.3. Detailed explanations of the setting, main

results, and the proofs for each instance of the problems are presented in Sections 3.3–3.6 for

mean estimation, linear regression, covariance estimation, and principal component analysis,

respectively.

Notations. Let [n] = {1, 2, . . . , n}. For x ∈ Rd, we use ∥x∥ = (
∑

i∈[d](xi)
2)1/2 to denote

the Euclidean norm. For X ∈ Rd1×d2 , we use ∥X∥ = max∥v∥2=1 ∥Xv∥2 to denote the spectral

norm. The d × d identity matrix is Id×d. The Kronecker product is denoted by x ⊗ y for

x ∈ Rd1 and y ∈ Rd2 , such that (x ⊗ y)(i−1)d+j = xiyj for i ∈ [d1] and j ∈ [d2]. Whenever

it is clear from context, we use S to denote both a set of data points and also the set of

indices of those data points. We use S ∼ S ′ to denote that two datasets S, S ′ of size n are

neighbors, such that dTV(p̂S, p̂S′) ≤ 1/n where dTV(·) is the total variation and p̂S is the

empirical distribution of the data points in S. We use µ(S) and Σ(S) to denote mean and

covariance of the data points in a dataset S, respectively. We use µp and Σp to denote mean
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and covariance of the distribution p.

3.1.1 Main results and related work

For each canonical problem of interest in statistical estimation, HPTR can readily be applied

to, in most cases, significantly improve upon known achievable sample complexity. Most of

the lower bounds we reference are copied in Appendix B.3 for completeness.

3.1.1.1 DP mean estimation

We apply our proposed HPTR framework to the standard DP mean estimation problem,

where i.i.d. samples S = {xi ∈ Rd}ni=1 are drawn from a distribution Pµ,Σ with an unknown

mean µ (which corresponds to θ in the general notation) and an unknown covariance Σ ≻ 0,

and we want to produce a DP estimate µ̂ of the mean. The resulting error is measured in

Mahalanobis distance, DPµ,Σ
(µ̂) = ∥Σ−1/2(µ̂ − µ)∥, which is scale-invariant and naturally

captured the uncertainty in all directions.

This problem is especially challenging since we aim for a tight guarantee that adapts

to the unknown Σ as measured in the Mahalanobis distance without sufficient samples to

directly estimate Σ, as we explain below. Despite being a canonical problem in DP statistics,

the optimal sample complexity is not known even for standard distributions: sub-Gaussian

and heavy-tailed distributions. We characterize the optimal sample complexity of the two

problems by providing the guarantee of HPTR and the matching sample complexity lower

bounds. A precise definition of sub-Gaussian distributions is provided in Eq. (3.21).

Theorem 11 (DP sub-Gaussian mean estimation algorithm, Corollary 3.3.13 informal).

Consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a sub-Gaussian distribution

with mean µ and covariance Σ. There exists an (ε, δ)-differentially private algorithm µ̂(S)

that given

n = Õξ,ζ

( d

ξ2
+

d

εξ

)
,



43

achieves Mahalanobis error ∥Σ−1/2(µ̂(S)− µ)∥ ≤ ξ with probability 1− ζ, where Õξ,ζ hides

the logarithmic dependency on ξ, ζ and we assume δ = e−O(d).

HPTR is the first algorithm for sub-Gaussian mean estimation with unknown covariance

that matches the best known sample complexity lower bound of n = Ω̃(d/ξ2 + d/(ξε)) from

[139, 129] up to logarithmic factors in error ξ and failure probability ζ. Existing algorithms

are suboptimal as they require either a larger sample size or strictly Gaussian assumptions.

Advances in DP mean estimation started with computationally efficient approaches

of [139, 129, 25]. We discuss the results as follows, and omit the polynomial factors in

log(1/δ). When the covariance Σ is known, Mahalanobis error ξ can be achieved with

n = Õ(d/ξ2 + d/(ξε)) samples. Under a relaxed assumption that Id×d ⪯ Σ ⪯ κId×d with a

known κ, n = Õ(d/ξ2 + d/(ξε) + d1.5/ε) samples are required using a specific preconditioning

approach tailored for the assumption and the knowledge of κ. For general unknown Σ,

O(d2/ξ2 + d2/(ξε)) samples are required using an explicit DP estimation of the covariance.

Empirically, further gains can be achieved with CoinPress [32].

Computationally inefficient approaches followed with a goal of identifying the fundamental

optimal sample complexity with minimal assumptions [36, 4]. For the unknown covariance

setting, the best known result under Mahalanobis error is achieved by [34]. Through analyzing

the differentially private Tukey median estimator introduced in [160], [34] shows that n =

Õ(d/ξ2 + d/(ξε)) is sufficient even when the covariance is unknown. However, the approach

heavily relies on the assumption that the distribution is strictly Gaussian. For sub-Gaussian

distributions, [34] proposes a different approach achieving sample complexity of n = Õ(d/ξ2 +

d/(ξε2)) samples with a sub-optimal (1/ε2) dependence.

Beyond the sub-Gaussian setting, it is natural to consider the DP mean estimation for

distributions with heavier tails. We apply HPTR framework to the more general mean

estimation problems for hypercontractive distributions. A distribution Pµ,Σ with mean µ and

covariance Σ is (κ, k)-hypercontractive if for all v ∈ Rd, Ex∼PX
[|⟨v, (x− µ)⟩|k] ≤ κk(v⊤Σv)k/2.

The assumption of hypercontractivity is similar to the bounded k-th moment assumptions,
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except requiring an additional lower bound on the covariance. This additional assumption is

necessary for our setting to make sure the Mahalanobis error guarantee is achievable. We

state our main result for hypercontractive mean estimation as follows. For simplicity of the

statement, we assume k, κ are constants.

Theorem 12 (DP hypercontractive mean estimation algorithm, Corollary 3.3.16 informal).

Consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a (κ, k)-hypercontractive

distribution with mean µ and covariance Σ. There exists an (ε, δ)-differentially private

algorithm µ̂(S) that given

n = Õd

( d
ξ2

+
d

εξ1+1/(k−1)

)
,

achieves Mahalanobis error ∥Σ−1/2(µ̂(S)− µ)∥ ≤ ξ with probability at least 0.99, where Õd

hides a logarithmic factor on d, and we assumes δ = e−O(d).

We prove an n = Ω(d/εξ1+1/(k−1)) sample complexity lower bound for hypercontractive

DP mean estimation in Proposition 3.3.18 to show the optimality of our upper bound result.

Notice that the first term Õd(d/ξ
2) in the upper bound cannot be improved up to logarithmic

factors even if we do not require privacy, thus HPTR is the first algorithm that achieves optimal

sample complexity for hypercontractive mean estimation under Mahalanobis distance up to

logarithmic factors in d. When the covariance is known, an existing DP mean estimator of

[135] achieves a stronger (ε, 0)-DP with a similar sample size of n = Õ(d/ξ2+d/(εξ1+1/(k−1))),

and no prior result is known for the unknown covariance case.

3.1.1.2 DP linear regression

We next apply HPTR framework to DP linear regression. Given i.i.d. samples S =

{(xi, yi)}i∈[n] from a distribution Pβ,Σ,γ2 of a linear model: yi = x⊤i β + ηi, where the in-

put xi ∈ Rd has zero mean and covariance Σ and the noise ηi ∈ R has variance γ2 satisfying

E[xiηi] = 0, the goal of DP linear regression is to output a DP estimate β̂ of the unknown

model parameter β, without knowledge about the covariance Σ. The resulting error is

measured in DPβ,Σ,γ2
(β̂) = (1/γ)∥Σ1/2(β̂ − β)∥ which is equivalent to the standard root excess
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risk of the estimated predictor β̂. Similar to Mahalanobis distance for mean estimation, this

is challenging since we aim for a tight guarantee that adapts to the unknown Σ without

having enough samples to directly estimate Σ.

Theorem 13 (DP sub-Gaussian linear regression, Corollary 3.4.16 informal). Consider a

dataset S = {(xi, yi)}ni=1 generated from a linear model yi = x⊤i β + ηi for some β ∈ Rd, where

{xi}i∈[n] are i.i.d. sampled from zero-mean d-dimensional sub-Gaussian distribution with

unknown covariance Σ, and {ηi}i∈[n] are i.i.d. sampled from zero mean one-dimensional sub-

Gaussian with variance γ2. We further assume the data xi and the noise ηi are independent.

There exists a (ε, δ)-differentially private algorithm β̂(S) that given

n = Õξ,ζ

( d

ξ2
+

d

εξ

)
,

achieves error (1/γ)∥Σ1/2(β̂(S)−β)∥ ≤ ξ with probability 1−ζ, where Õξ,ζ hides the logarithmic

dependency on ξ, ζ and we assume δ = e−O(d).

HPTR is the first algorithm for sub-Gaussian distributions with an unknown covariance

Σ that up to logarithmic factors matches the lower bound of n = Ω̃(d/ξ2 + d/(ξε)) assuming

ε < 1 and δ < n−1−ω for some ω > 0 from [40, Theorem 4.1]. An existing algorithm for

DP linear regression from [40] is suboptimal as it require Σ to be close to the identity

matrix, which is equivalent to assuming that we know Σ. [77] proposes to use PTR and

B-robust regression algorithm from [99] for differentially private linear regression under i.i.d.

data assumptions (also exponential time), but only asymptotic consistency is proven as

n → ∞. Under an alternative setting where the data is deterministically given without

any probabilistic assumptions, significant advances in DP linear regression has been made

[201, 142, 168, 71, 27, 208, 88, 167, 206, 180]. The state-of-the-art guarantee is achieved in

[206, 180] which under our setting translates into a sample complexity of n = O(d1.5/(ξε)).

The extra d1/2 factor is due to the fact that no statistical assumption is made, and cannot be

improved under the deterministic setting (not necessarily i.i.d.) that those algorithms are

designed for.
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Similar to mean estimation, we also consider the DP linear regression for distributions

with heavier tails, and apply HPTR framework to the linear regression problem under (k, κ)-

hypercontractive distributions (see Definition 3.3.14). HPTR can handle both independent

and dependent noise, and we state the independent noise case here the dependent noise case

in Section 3.4.3.3. For simplicity of the statement, we assume k, κ are constants.

Theorem 14 (DP hypercontractive linear regression with independent noise, Corollary 3.4.18

informal). Consider a dataset S = {(xi, yi)}ni=1 generated from a linear model yi = x⊤i β + ηi

for some β ∈ Rd, where {xi}i∈[n] are i.i.d. sampled from zero-mean d-dimensional (κ, k)-

hypercontractive distribution with unknown covariance Σ and ηi are i.i.d. sampled from

zero mean one-dimensional (κ, k)-hypercontractive distribution with variance γ2. We further

assume the data xi and the noise {ηi}i∈[n] are independent. There exists an (ε, δ)-differentially

private algorithm β̂(S) that given

n = Õd

( d

ξ2
+

d

εξ1+1/(k−1)

)
,

achieves error (1/γ)∥Σ1/2(β̂(S)− β)∥ ≤ ξ with probability 0.99, where Õd hides a logarithmic

factor on d, and we assume δ = e−O(d).

The first term in the sample complexity cannot be improved as it matches the classical

lower bound of linear regression even without privacy constraint. For the second term, the

sub-Gaussian lower bound of n = Ω̃(d/(εξ)) from [40, Theorem 4.1] continues to hold in the

hypercontractive setting. We do not have a matching lower bound for the second term. To

the best of our knowledge, HPTR is the first algorithm for linear regression that guarantees

(ε, δ)-DP under hypercontractive distributions with independent noise.

When applied to the setting where noise ηi is dependent on the input vector xi, HPTR

is the first algorithm for linear regression that guarantees (ε, δ)-DP. We refer the readers to

Section 3.4.3.3 for more detailed description of our result.
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3.1.1.3 DP covariance estimation

We present HPTR applied to covariance estimation from i.i.d. samples under a Gaus-

sian distribution N (0,Σ). The main reason for this choice is that the Mahalanobis error

∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F of the Kronecker product xi ⊗ xi is proportional to the natural error

metric of total variation for Gaussian distributions. The strength of HPTR framework is that

it can be seamlessly applied to general distributions, for example sub-Gaussian or heavytailed,

but the resulting Mahalanobis error becomes harder to interpret as it involves respective

fourth moment tensors.

Theorem 15 (DP Gaussian covariance estimation, Corollary 3.5.9 informal). Consider a

dataset S = {xi}ni=1 of n i.i.d. samples from N (0,Σ). There exists a (ε, δ)-differentially

private estimator Σ̂ that given

n = Õξ,ζ

( d2
ξ2

+
d2

ξε

)
,

achieves error ∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ≤ ξ with probability 1 − ζ, where Õξ,ζ hides the

logarithmic dependency on ξ, ζ and we assume δ = e−O(d).

This Mahalanobis distance guarantee (for the Kronecker product, {xi ⊗ xi}, of the

samples) implies that the estimated Gaussian distribution is close to the underlying one

in total variation distance (see for example [129, Lemma 2.9]): dTV(N (0, Σ̂),N (0,Σ)) =

O(∥Σ−1/2Σ̂Σ−1/2− Id×d∥F ) = O(ξ). The sample complexity is near-optimal, matching a lower

bound of n = Ω(d2/ξ2 +min{d2, log(1/δ)}/(εξ)) up to a logarithmic factor when δ = e−Θ(d).

The first term follows from the classical estimation of the covariance without DP. The second

term follows from extending the lower bound in [129] constructed for pure differential privacy

with δ = 0 and matches the second term in our upper bound when δ = e−Θ(d2). We note that a

similar upper bound is achieved by the state-of-the-art (computationally inefficient) algorithm

in [4], which improves over HPTR in the lower order terms not explicitly shown in this informal

version of our theorem. Both HPTR and [4, 10] improve upon computationally efficient

approaches of [139, 129] which require additional assumption that Id×d ⪯ Σ ⪯ κId×d with a
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known κ. Recently, [133] introduced a novel preconditioning approach that is polynomial time

and removes the upper and lower bounds on Σ completely, but requires sample complexity of

n = Õ(d2/ξ2 + d2polylog(1/δ)/(ξε) + d5/2polylog(1/δ)/ε).

3.1.1.4 DP principal component analysis

We next apply HPTR to the task of estimating the top PCA direction from i.i.d. sampless

Theorem 16 (DP sub-Gaussian principle component analysis, Corollary 3.6.5). Consider a

dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a zero-mean sub-Gaussian distribution with

unknown covariance Σ. There exists an (ε, δ)-differentially private estimator û that given

n = Õξ,ζ

( d

ξ2
+

d

εξ

)
,

achieves error 1− û⊤Σû
∥Σ∥ ≤ ξ with probability 1−ζ, where Õξ,ζ hides the logarithmic dependency

on ξ, ζ and we assume δ = e−O(d).

HPTR is the first estimator for sub-Gaussian distributions to nearly match the information-

theoretic lower bound of n = Ω(d/ξ2 + min{d, log(1/δ)}/(εξ)) as we showed in Proposi-

tion 3.6.6. The first term Ω(d/ξ2) is unavoidable even without DP (Proposition 3.6.7).

The second term in the lower bound follows from Proposition 3.6.6, which matches the

second term in the upper bound when δ = e−Θ(d). Existing DP PCA approaches from

[33, 46, 136, 80, 102, 103, 100] are designed for arbitrary samples not necessarily drawn

i.i.d. and hence require a larger samples size of n = Õ(d/ξ2 + d1.5/(ξε)). This is also un-

avoidable for more general deterministic data, as it matches an information theoretic lower

bound [80] under weaker assumptions on the data than i.i.d. Gaussian.

Theorem 17 (DP hypercontractive principle component analysis, Corollary 3.6.10). Consider

a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a zero-mean (κ, k)-hypercontractive

distribution with unknown covariance Σ. There exists an (ε, δ)-differentially private estimator

û that given

n = Õξ,d

( d

ξ(2k−2)/(k−2)
+

d

εξ1+2/(k−2)

)
,
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achieves error 1− û⊤Σû
∥Σ∥ ≤ ξ with probability 0.99, where Õξ,d hides the logarithmic dependency

on ξ, d and we assume δ = e−O(d).

HPTR is the first estimator for hypercontractive distributions to guarantee differential

privacy for PCA with sample complexity scaling as O(d). As a complement of our algorithm,

we proved a n = Ω(d/ξ2 +min{d, log(1/δ)}/(ξ1+2/(k−2)ε)) information-theoretic lower bound

in Proposition 3.6.11. The first term Ω(d/ξ2) in the lower bound is needed even without DP,

and there is a gap of factor O(ξ−2/(k−2)) compared to the first term in our upper bound. The

second term in the lower bound matches the last term in the upper bound when δ = e−Θ(d).

3.1.2 Algorithm

The proposed High-dimensional Propose-Test-Release (HPTR) is not computationally efficient,

as the Test step requires enumerating over a certain neighborhood of the input dataset and

the Release step requires enumerating over all directions in high dimension. The strengths

of HPTR is that (i) the same framework can be seamlessly applies to many problems as we

demonstrate in Sections 3.3–3.6; (ii) a unifying recipe can be applied for all those instances

to give tight utility guarantees as we explicitly prescribe in Section 3.1.2.1; and (iii) the

algorithm is simple and the analysis is clear such that it is transparent how the distribution

family of interest translates into the utility guarantee (via resilience).

As a byproduct of the simplicity of the algorithm and clarity of the analysis, we achieve the

state-of-the-art sample complexity for all those problem instances with minimal assumptions,

oftentimes nearly matching the information theoretic lower bounds. As a byproduct of the

use of robust statistics, we guarantee robustness against adversarial corruption for free (e.g.,

Theorems 20, 22, 24).

We describe the framework for general statistical estimation problem where data is drawn

i.i.d. from a distribution represented by two unknown parameters θ ∈ Rp and ϕ and is coming

from a known family of distributions. An example of a problem instance of this type would

be mean estimation from heavy-tailed distributions that are (κ, k)-hypercontractive with
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unknown mean µ (which in the general notation is θ) and unknown covariance Σ (which

corresponds to ϕ).

The main component is an exponential mechanism in Release step below that uses a

loss function DS(θ̂) and a support Bτ,S defined as

Bτ,S = {θ̂ ∈ Rp : DS(θ̂) ≤ τ} .

Bounding the support of the exponential mechanism is important since the sensitivity also

depends on θ̂ in many problems of interest. We discuss this in detail in the example of mean

estimation in Section 3.3.2.2. The specific choices of the threshold τ only depend on the tail

of the distribution family of interest and not the parameters θ or ϕ or the data. In particular,

we use the resilience property of the distribution family to prescribe the choice of τ for each

problem instance that gives us the tight utility guarantees. As explained in Section 3.1, we

use one-dimensional robust statistics to design the loss functions, which we elaborate for each

problem instances in Sections 3.3–3.6, where we also explain how to choose the sensitivity for

each case based on the resilience of the distribution family only.

After we Propose the choice of the sensitivity ∆ and threshold τ for the problem instance

in hand, we Test to make sure that the given dataset S is consistent with the assumptions

made when selecting DS(θ̂), ∆, and τ . This is done by testing the safety of the exponential

mechanism, by privately checking the margin to safety, i.e., how many data points need to be

changed from S for the exponential mechanism to violate differential privacy conditions. If

the margin is large enough, HPTR proceeds to Release. Otherwise, it halts and outputs ⊥.

A set of such unsafe datasets is defined as

UNSAFE(ε,δ,τ) =
{
S ′ ⊆ Rd×n | ∃S ′′ ∼ S ′ and ∃E ⊆ Rp such that

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) > eεPθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E) + δ or Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) > eεPθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ E) + δ
}
,

(3.2)

where r(ε,∆,τ,S) denotes the pdf of the exponential mechanism in Eq. (3.3). Given a loss (or

a distance) function, DS(θ̂), which is a surrogate for the target measure of error, Dϕ(θ̂, θ),

High-dimensional Propose-Test-Release (HPTR) proceeds as follows:
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1. Propose: Propose a target bound ∆ on local sensitivity and a target threshold τ for

safety.

2. Test:

2.1. Compute the safety margin mτ = minS′ dH(S, S
′) such that S ′ ∈ UNSAFE(ε/2,δ/2,τ).

2.2. If m̂τ = mτ + Lap(2/ε) < (2/ε) log(2/δ), then output ⊥, and otherwise continue.

3. Release: Output θ̂ sampled from a distribution with a pdf:

r(ε,∆,τ,S)(θ̂) =


1
Z
exp

{
− ε

4∆
DS(θ̂)

}
if θ̂ ∈ Bτ,S ,

0 otherwise ,
(3.3)

where Z =
∫
Bτ,S

exp{−(εDS(θ̂))/(4∆)}dθ̂.

It is straightforward to show that (ε, δ)-differential privacy is satisfied for all input S.

Theorem 18. For any dataset S ⊂ X n, distance function DS : Rp → R on that dataset, and

parameters ε, δ,∆ and τ , HPTR is (ε, δ)-differentially private.

Proof. The differentially private margin m̂τ is (ε/2, 0)-differentially private, because the

sensitivity of the margin is one, and we are adding a Laplace noise with parameter 2/ε. The

Test step (together with the exponential mechanism) is (0, δ/2)-differentially private since

there is a probability δ/2 event that a unsafe dataset S with a small margin mτ is classified

as a safe dataset and passes the test. On the complimentary event, namely, that the dataset

that passed the Test is indeed safe, the Release step is (ε/2, δ/2)-differentially private

since we use UNSAFE(ε/2,δ/2,τ) in the Test step.

3.1.2.1 Utility analysis of HPTR for statistical estimation

We prescribe the following three-step recipe as a guideline for applying HPTR to each specific

statistical estimation problem and obtaining a utility guarantee. Consider a problem of

estimating an unknown θ from samples from a generative model Pθ,ϕ, where the error is

measured in Dϕ(θ̂, θ).
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• Step 1: Design a surrogate DS(θ̂) for the target error metric Dϕ(θ̂, θ) using only

one-dimensional robust statistics on S.

• Step 2: Assuming resilience of the dataset, propose an appropriate sensitivity bound ∆

and threshold τ and analyze the utility of HPTR.

• Step 3: For each specific family of generative models Pθ,ϕ with a known tail bound,

characterize the resulting resilience and substitute it in the utility analysis from the

previous step, which gives the final guarantee.

We demonstrate how to apply this recipe and carry out the utility analysis for mean estimation

(Section 3.3), linear regression (Section 3.4), covariance estimation (Section 3.5), and PCA

(Section 3.6). We explain and justify the use of one-dimensional robust statistics in Step

1 and the assumption on the resilience of the dataset in Step 2 in the next section using

the mean estimation problem as a canonical example. It is critical to construct DS(θ̂) using

only one-dimensional and robust statistics; this ensures that DS(θ̂) has a small sensitivity as

demonstrated in Section 3.3.1. We prove error bounds only assuming resilience of the dataset;

this relies on a fundamental connection between sensitivity and resilience as explained in

Section 3.3.2.

3.1.3 Technical contributions and proof sketch

We use the canonical example of mean estimation to explain our proof sketch. For i.i.d. samples

from a sub-Gaussian distribution Pµ,Σ with mean µ and covariance Σ, we show in Theorem 19

that HPTR achieves a near optimal sample complexity of n = Õ(d/α2 + d/(αε)) to get

Mahalanobis error ∥Σ−1/2(µ̂− µ)∥ = Õ(α) for some target accuracy α ∈ [0, 1].

Our proof strategy is to first show that the robust one-dimensional statistics have small

sensitivity if the dataset is resilient. Consequently, the loss function DS(µ̂) has a small local

sensitivity, i.e. the sensitivity is small if restricted to µ̂ close to µ and if the dataset is resilient.

To ensure DP, we run Release only when those two locality conditions are satisfied; we first
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Propose the sensitivity ∆ and a threshold τ , and then we Test that DP guarantees are

met on the given dataset with those choices. We prove that resilient datasets pass this safety

test with a high probability and achieve the desired accuracy. We give a sketch of the main

steps below.

One-dimensional robust statistics have small sensitivity on resilient datasets. A

set S = {xi ∈ Rd}i∈[n] of i.i.d. samples from a sub-Gaussian distribution has the following

resilience property with probability 1 − ζ if n = Ω̃(d/α2), where Ω̃ hides polylogarithmic

factors α and the failure probability ζ:

∣∣∣ 1|T |∑
xi∈T

⟨v, xi − µ⟩
∣∣∣ ≤ 2σv

√
log(1/α) , and

∣∣∣ 1|T |∑
xi∈T

(
⟨v, xi − µ⟩2 − σ2

v

)∣∣∣ ≤ 2σ2
v log(1/α) ,

for any subset T ⊂ S of size at least αn and for any unit norm v ∈ Rd where σ2
v = v⊤Σv

(Lemma 3.3.12). This means that the α-tail of the distribution (when projected down to one

dimension) cannot be too far from the true one in mean and variance. For mean estimation,

we use the loss function of DS(µ̂) = maxv∈Rd,∥v∥=1⟨v, µ̂ − µ(Mv,α)⟩/
√
v⊤Σ(Mv,α)v, where

µ(T ) and Σ(T ) are mean and covariance of a dataset T andMv,α ⊂ S is defined as follows.

For each direction v, we partition S into three sets Tv,α,Mv,α, and Bv,α. Tv,α ⊂ S is the

subset of datapoints corresponding to the largest αn datapoints in {⟨v, xi⟩}xi∈S, the projected

data points in the direction v. Bv,α ⊂ S corresponds to the smallest αn values, andMv,α ⊂ S

is the remaining (1− 2α)n data points.

We show that the robust projected mean, ⟨v, µ(Mv,α)⟩ has sensitivity O(σv
√
log(1/α)/n).

Under the resilience above, the top α-tail, Tv,α, has the empirical mean that is no more

than O(σv
√

log(1/α) ) away from the true projected mean ⟨v, µ⟩, and the same is true for

Bv,α. It follows that there exists at least one data point in Tv,α and one data point in Bv,α
that are no more than O(σv

√
log(1/α)) away from µv. This implies that the range of the

middle subset Mv,α is provably bounded by O(σv
√

log(1/α)), and the sensitivity of the

robust mean ⟨v, µ(Mv,α)⟩ is guaranteed to be O(σv
√

log(1/α)/n). We can similarly show

that v⊤Σ(Mv,α)v has sensitivity O(σ2
v log(1/α)/n).
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Under the above sensitivity bounds for the one dimensional statistics, it follows (for

example, in Eq. (3.20)) that the sensitivity of the loss function DS(µ̂) is bounded by

O(
√
log(1/α)/n) as long as DS(µ̂) ≤ τ := Cα

√
log(1/α) and the dataset is resilient. It is

worth noting here that since the sensitivity is only small when DS(µ̂) ≤ τ , our exponential

mechanism only samples from the set Bτ,S, which contains only the hypotheses with small

scores. We handle this locality with Test step that checks that the DP conditions are

satisfied for the given dataset and the choice of ∆ := C ′
√
log(1/α)/n and τ := Cα

√
log(1/α).

It is critical for ensuring DP that these choices only depend on the resilience (which is the

property of the distribution family of interest, which in this case is sub-Gaussian) and the

target accuracy, and not on the dataset S.

Sample complexity analysis. Assuming the sensitivity is bounded by ∆ = C ′
√
log(1/α)/n,

which we ensure with the safety test, we analyze the utility of the exponential mechanism.

For a target accuracy of ∥Σ−1/2(µ̂ − µ)∥ = O(α
√
log(1/α)), we consider two sets, Bout =

{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c0α
√

log(1/α)} and Bin = {µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c1α
√

log(1/α)}, for

some c0 > c1. The exponential mechanism achieves accuracy c0α
√

log(1/α) with probability

1− ζ if

P(µ̂ /∈ Bout) ≤
P(µ̂ /∈ Bout)

P(µ̂ ∈ Bin)
≲

Vol(Bτ,S)

Vol(Bin)

e−
ε

4∆
c0α
√

log(1/α)

e−
ε

4∆
c1α
√

log(1/α)
≤ eO(d)e−

ε
4∆

(c0−c1)α
√

log(1/α) ≤ ζ ,

where the second inequality requires DS(µ̂) ≃ ∥Σ−1/2(µ̂−µ)∥, which we show in Lemma 3.3.6.

Since ∆ = O(
√

log(1/α)/n), it is sufficient to have a large enough c0 and n = Õ((d +

log(1/ζ))/(αε)) with a large enough constant. Together with the sample size required to

ensure resilience, this gives the desired sample complexity of n = Õ(d/α2+(d+log(1/ζ))/(αε))

where Õ hides polylogarithmic factors in 1/α and 1/δ.

Safety test. We are left to show that for a resilient dataset, the failure probability of the

safety test, P(mτ +Lap(2/ε) < (2/ε) log(2/δ)), is less than ζ. This requires the safety margin

to be large enough, i.e. mτ ≥ k∗ = (2/ε) log(4/(δζ)). Recall that the safety margin is defined

as the Hamming distance to the closest dataset to S where the (ε/2, δ/2)-DP condition of
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the exponential mechanism is violated. We therefore need to show that the DP condition

is satisfied for not only S but any dataset S ′ at Hamming distance at most k∗ from S. We

treat S ′ as a corrupted version of a resilient S by a fraction k∗/n-corruption. Since we are

using robust statistics that are designed to be robust against data corruption, we can show

that the corrupted resilient set still has a low sensitivity for DS′(µ̂). Building upon the

proof techniques developed in [34] for a safety test for a Tukey median based exponential

mechanism, we use the fact that S ′ is a corrupted version of a resilient dataset S to show

that the safety test passes with high probability.

3.2 Preliminaries

We give the backgrounds on differential privacy and the Propose-Test-Release mechanism. We

say two datasets S and S ′ of the same size are neighboring if the Hamming distance between

them is at most one. There is another equally popular definition where injecting or deleting

one data point to S is considered as a neighboring dataset. All our analysis generalizes to

that definition also, but notations get slightly heavier.

Definition 3.2.1 ([78]). We say a randomized algorithm M : X n → Y is (ε, δ)-differentially

private if for all neighboring databases S ∼ S ′ ∈ X n, and all Y ⊆ Y, we have P(M(S) ∈

Y ) ≤ eεP(M(S ′) ∈ Y ) + δ.

HPTR relies on the exponential mechanism for its adaptivity and flexibility.

Definition 3.2.2 (Exponential mechanism [164]). The exponential mechanism Mexp : X n → Θ

takes database S ∈ X n, candidate space Θ, score function DS(θ̂) and sensitivity ∆ as input,

and select output with probability proportional to exp{−εDS(θ̂)/2∆}.

The exponential mechanism is (ε, 0)-DP if the sensitivity of DS(θ̂) is bounded by ∆.

Lemma 3.2.3 ([164]). If maxθ̂∈ΘmaxS∼S′ |DS(θ̂)−DS′(θ̂)| ≤ ∆, then the exponential mech-

anism is (ε, 0)-DP.
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Starting from the seminal paper [77], there are increasing efforts to apply differential

privacy to statistical problems, where the dataset consists of i.i.d. samples from a distribution.

There are two main challenges. First, the support is typically not bounded, and hence, the

sensitivity is unbounded. [77] proposed to resolve this by using robust statistics, such as

median, to estimate the mean. The second challenge is that while median is quite insensitive

on i.i.d. data, this low sensitivity is only local and holds only for i.i.d. data from a certain

class of distributions. This led to the original definition of local sensitivity in the following.

Definition 3.2.4 (Local Sensitivity). We define local sensitivity of dataset S ∈ X n and

function f : X n → R as ∆f (S) := maxS′∼S |f(S)− f(S ′)|.

[77] introduced the Propose-Test-Release mechanism to resolve both issues. First, a

certain robust statistic f(S), such as median, mode, Inter-Quantile Range (IQR), or B-robust

regression model [99] is chosen as a query. It can be used to approximate a target statistic of

interest, such as mean, range, or linear regression model, or the robust statistic itself could

be the target. Then, the PTR mechanism proceeds in three steps. In the propose step, a

local sensitivity ∆ is proposed such that ∆f (S) ≤ ∆ for all S that belongs to a certain family.

In the test step, a safety margin m, which is how many data points have to be changed to

violate the local sensitivity, is computed and a private version of the safety margin, m̂, is

compared with a threshold. If the safety margin is large enough, then the algorithm outputs

f(S) via a Laplace mechanism with parameter 2∆/ε. Otherwise, the algorithm halts and

outputs ⊥.

Definition 3.2.5 (Propose-Test-Release (PTR) [77, 198]). For a query function f : X n → R,

the PTR mechanism MPTR : X n → R proceeds as follows:

1. Propose: Propose a target bound ∆ ≥ 0 on local sensitivity.

2. Test:

2.1. Compute m = minS′ dH(S, S
′) such that local sensitivity of S ′ satisfies ∆f (S

′) ≥ ∆.
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2.2. If m̂ = m+ Lap(2/ε) < (2/ε) log(1/δ) then output ⊥, and otherwise continue.

3. Release: Output f(S) + Lap(2∆/ε).

It immediately follows that PTR is (ε, δ)-differentially private for any input dataset.

Lemma 3.2.6 ([77, 198]). MPTR is (ε, δ)-DP

Given a robust statistic of interest, the art is in identifying the family of datasets with

small local sensitivity and showing that the sensitivity is small enough to provide good utility.

For example, for privately releasing the mode, for the family of distributions whose occurrences

of the mode is at least (4/ε) log(1/δ) larger than the occurrences of the second most frequent

value, the local sensitivity is zero and PTR outputs the true mode with probability at least

1− δ [198]. Such a specialized PTR mechanism for zero local sensitivity is also called the

stability based method.

In general, a naive method of computing m in the TEST step requires enumerating over all

possible databases S ∈ X n. For typical one-dimensional data/statistics, for example median

estimation, this step can be computed efficiently. This led to a fruitful line of research in

DP statistics on one-dimensional data. [77, 35] propose PTR mechanisms for the range and

the median of of a 1-D smooth distribution and [20, 18, 35] propose PTR mechanisms that

can estimating median and mean of a 1-D sub-Gaussian distribution. The stability-based

method introduced in [198] can be used to release private histograms, among other things,

which can be subsequently used as a black box to solve several important problems including

range estimation of a 1-D sub-Gaussian distribution [139, 129, 160] or a 1-D heavy-tailed

distribution [135, 160], and general counting queries. PTR and stability-based mechanisms

are powerful tools when estimating robust statistics of a distribution from i.i.d. samples.

Even if computational complexity is not concerned, however, directly applying PTR

to high dimensional distributions can increase the statistical cost significantly, which has

limited the application of PTR. One exception is the recent work of [34]. For the mean

estimation problem with Mahalanobis error metric of ∥Σ−1/2(µ̂ − µ)∥, the private Tukey
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median mechanism introduced in [160] is studied. One major limitation of the utility analysis

is that private Tukey median requires the support to be bounded. In [160], this is circumvented

by assuming the covariance Σ is known, in which case one can find a support with, for example,

the private histogram of [198]. Instead, [34] proposed using private Tukey median inside

the PTR mechanism and designed an advanced safety test for high-dimensional problems.

This naturally bounds the support that adapts to the geometry of the problem without

explicitly and privately estimating Σ. One notable byproduct of this approach is that the

resulting exponential mechanism is no longer pure DP, but rather (ε, δ)-DP. This is because

the resulting exponential mechanism has a support that depends on the dataset S, and

hence two exponential mechanisms on two neighboring datasets have different supports. The

limitations of the private Tukey median are that (i) it requires symmetric distributions, like

Gaussian distributions, and do not generalize to even sub-Gaussian distributions, and (ii) it

only works for mean estimation. To handle the first limitation, [34] propose another PTR

mechanism using Gaussian noise, which works for more general sub-Gaussian distributions

but achieves sub-optimal sample complexity.

HPTR builds upon this advanced PTR with the high-dimensional safety test from [34].

However, there are major challenges in applying this safety test to HPTR, which we overcome

with the resilience property of the dataset and the robustness of the loss function. For private

Tukey median, the sensitivity is always one for any µ̂ and any S, and the only purpose of

the safety test is to ensure that the support is not too different between two neighboring

datasets. For HPTR, the sensitivity is local in two ways: it requires S to be resilient and the

estimate µ̂ to be sufficiently close to µ. To ensure a large enough margin when running the

safety test, HPTR requires this local sensitivity to hold not just for the given S but for all

S ′ within some Hamming distance from S. We use the fact that this larger neighborhood is

included in an even larger set of databases that are adversarial corruption of the α-fraction of

the original resilient dataset S with a certain choice of α. The robustness of our loss function

implies that the bounded sensitivity is preserved under such corruption of a resilient dataset.

This is critical in proving that a resilient dataset passes the safety test with high probability.
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We take a first-principles approach to design a universal framework for DP statistical

estimation that blends exponential mechanism, robust statistics, and PTR. The exponential

mechanism in HPTR adapts to the geometry of the problem without explicitly estimating

any other parameters and also gives us the flexibility to apply to a wide range of problems.

The choice of the loss functions that only depend on one-dimensional statistics is critical in

achieving the low sensitivity, which directly translates into near optimal utility guarantees

for several canonical problems. Ensuring differential privacy is achieved by building upon the

advanced PTR framework of [34], with a few critical differences. Notably, the safety analysis

uses the resilience of robust statistics in a fundamental way.

On the other hand, there is a different way of handling local sensitivity, which is known

as smooth sensitivity. Introduced in [171], smooth sensitivity is a smoothed version of local

sensitivity on the neighborhood of the dataset, defined as

∆smooth
f (S) = max

S′∈Xn
{∆f (S

′)e−εdH(S,S′)}

Note that, in general, computing smooth sensitivity is also computationally inefficient with

an exception of [19]. Using smooth sensitivity, [152, 181, 44, 19] leverage robust M-estimators

for differentially private estimation and inference. The intuition is based on the fact that

the influence function of the M-estimators can be used to bound the smooth sensitivity. The

applications include: linear regression, location estimation, generalized linear models, private

testing. However, these approaches require restrictive assumptions on the dataset that need

to be checked (for example via PTR) and fine-grained analyses on the statistical complexity

is challenging; there is no sample complexity analysis comparable to ours. One exception is

[39], which proposes a smooth sensitivity based approach and gives an upper bound on the

sub-Gaussian mean estimation error for a finite n, but only for one-dimensional data.

3.3 Mean estimation

In a standard mean estimation, we are given i.i.d. samples S = {xi ∈ Rd}ni=1 drawn from a

distribution Pµ,Σ with an unknown mean µ (which corresponds to θ in the general notation)
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and an unknown covariance Σ ≻ 0 (which corresponds to ϕ in the general notation), and

we want to produce a DP estimate µ̂ of the mean. The resulting error is best measured in

Mahalanobis distance, DΣ(µ̂, µ) = ∥Σ−1/2(µ̂− µ)∥, because this is a scale-invariant distance;

every direction has unit variance after whitening by Σ.

This problem is especially challenging since we aim for a tight guarantee that adapts

to the unknown Σ as measured in the Mahalanobis distance without enough samples to

directly estimate Σ (see Section 3.1.1 for a survey). Despite being a canonical problem in

DP statistics, the optimal sample complexity is not known even for standard sub-Gaussian

and heavy-tailed distributions. We characterize the optimal sample complexity by showing

that HPTR matches the known lower bounds in Section 3.3.3. This follows directly from the

general three-step strategy outlined in Section 3.1.2.1.

3.3.1 Step 1: Designing the surrogate DS(µ̂) for the Mahalanobis distance

We want to privately release µ̂ with small Mahalanobis distance ∥Σ−1/2(µ̂ − µ)∥. In the

exponential mechanism in Release step, we propose using the surrogate distance,

DS(µ̂) = max
v:∥v∥≤1

⟨v, µ̂⟩ − µv(Mv,α)

σv(Mv,α)
, (3.4)

where the robust one-dimensional mean µv(Mv,α) and variance σ2
v(Mv,α) are defined as

follows. We partition S = {xi}ni=1 into three sets, Bv,α,Mv,α, and Tv,α, by considering a set

of projected data points Sv = {⟨v, xi⟩}xi∈S and letting Bv,α be the data points corresponding

to the subset of bottom (2/5.5)αn data points with the smallest values in Sv, Tv,α be the

subset of the top (2/5.5)αn data points with the largest values, andMv,α be the subset of

remaining (1− (4/5.5)α)n data points. For a fixed direction v, define

µv(Mv,α) =
1

|Mv,α|
∑

xi∈Mv,α

⟨v, xi⟩ , and σ2
v(Mv,α) =

1

|Mv,α|
∑

xi∈Mv,α

(⟨v, xi⟩ − µv(Mv,α))
2 ,(3.5)

which are robust estimates of the population projected mean µv = ⟨v, µ⟩ and the population

projected variance σ2
v = v⊤Σv.
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General guiding principles for designing DS(µ̂). We propose the following three design

principles that apply more generally to all problem instances of interest. The first guideline is

that it should recover the target error metric DΣ(µ̂, µ) = ∥Σ−1/2(µ̂− µ)∥ when we substitute

the population statistics, e.g., µv and σv for mean estimation, for their robust counterparts:

µv(Mv,α) and σv(Mv,α). This ensures that minimizing DS(µ̂) is approximately equivalent to

minimizing the target metric DΣ(µ̂, µ) = ∥Σ−1/2(µ̂−µ)∥ (Lemma 3.3.6). For mean estimation,

this equivalence is shown in the following lemma.

Lemma 3.3.1. For any µ ∈ Rd and 0 ≺ Σ ∈ Rd×d, let µv = ⟨v, µ⟩ and σ2
v = v⊤Σv. Then,

we have

∥Σ−1/2(µ̂− µ)∥ = max
v:∥v∥≤1

⟨v, µ̂⟩ − µv

σv
.

Proof. Let µ̂− µ =
∑d

ℓ=1 aℓuℓ with aℓ = ⟨uℓ, µ̂− µ⟩, ∥a∥ = ∥µ̂− µ∥ and uℓ’s are the singular

vectors of Σ. Similarly, let v =
∑d

ℓ=1 bℓuℓ with ∥b∥ = 1. Then, we have

∥Σ−1/2(µ̂− µ)∥2 =
∑

(a2ℓ/σℓ) and
⟨v, (µ̂− µ)⟩

σv
=

⟨a, b⟩√∑
b2ℓσℓ

.

From Cauchy-Schwarz, we have ⟨a, b⟩2 ≤ (
∑
b2ℓσℓ)(

∑
a2ℓσ

−1
ℓ ), which proves that

∥Σ−1/2(µ̂− µ)∥ ≥ max
v:∥v∥=1

(1/σv)⟨v, (µ̂− µ)⟩ .

To show equality, we find v that makes Cauchy-Schwarz inequality tight. Let v =
∑d

ℓ=1 bℓuℓ

with a choice of bℓ = (1/Z)aℓσ
−1
ℓ and Z =

√∑
ℓ a

2
ℓσ

−2
ℓ . This implies ∥b∥ = 1 and

⟨a, b⟩ =
1

Z

d∑
ℓ=1

(1/σℓ)a
2
ℓ , and

√∑
b2ℓσℓ =

1

Z

√√√√ d∑
ℓ=1

(1/σuℓ
)a2ℓ ,

which implies that there exists a v such that ∥Σ−1/2(µ̂−µ)∥ = (1/σv)⟨v, µ̂−µ⟩ and ∥Σ−1/2(µ̂−

µ)∥ ≤ maxv:∥v∥=1(1/σv)⟨v, µ̂− µ⟩.

The second guideline is that DS(µ̂) should depend only on the one-dimensional statistics of

the data. This is critical since the sensitivity of high-dimensional statistics increases with the



62

ambient dimension d. For example, consider using the robust mean estimate µ̂robust(S) ∈ Rd

from [73] and using the Euclidean distance DS(µ̂) = ∥µ̂ − µ̂robust(S)∥ in the exponential

mechanism, where we are assuming Σ = I for simplicity. It can be shown that, even for

Gaussian distributions, this requires n = Ω̃(d3/2/(εα) + d/α2) samples to achieve an accuracy

of ∥µ̂− µ∥ = Õ(α). This is significantly sub-optimal compared to what HPTR achieves in

Corollary 3.3.13, which leverages the fact that sensitivity of one-dimensional statistics is

dimension-independent.

The last guideline is to use robust statistics. Robust statistics have small sensitivity on

resilient datasets, which is critical in achieving the near-optimal guarantees. We elaborate on

it in Section 3.3.2.2.

3.3.2 Step 2: Utility analysis under resilience

For utility, we prefer smaller ∆ and τ to ensure that the exponential mechanism samples µ̂

closer to the minimum of DS(µ̂) ≈ ∥Σ−1/2(µ̂− µ)∥. However, aggressive choices can violate

the DP condition and hence fail the safety test. Near-optimal utility can be achieved by

selecting ∆ and τ based on the resilience of the dataset, defined as follows.

Definition 3.3.2 (Resilience for mean estimation [186, 217]). For some α ∈ (0, 1), ρ1 ∈ R+,

and ρ2 ∈ R+, we say a set of n data points Sgood is (α, ρ1, ρ2)-resilient with respect to (µ,Σ)

if for any T ⊂ Sgood of size |T | ≥ (1− α)n, the following holds for all v ∈ Rd with ∥v∥ = 1:∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩ − µv

∣∣∣ ≤ ρ1 σv , and (3.6)

∣∣∣ 1|T |∑
xi∈T

(
⟨v, xi⟩ − µv

)2 − σ2
v

∣∣∣ ≤ ρ2 σ
2
v , (3.7)

where µv = ⟨v, µ⟩ and σ2
v = v⊤Σv.

Originally, resilience is introduced in the context of robust statistics. Resilience measures

how sensitive the sample statistics are to removing an α-fraction of the data points. A

dataset from a distribution with a lighter tail has smaller resilience (ρ1, ρ2). For example, sub-

Gaussian distributions have ρ1 = O(α
√

log(1/α)) and ρ2 = O(α log(1/α)) (Lemma 3.3.12),
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which are smaller than the resilience of heavy-tailed distributions with bounded k-th moment,

i.e., ρ1 = O(α1−1/k) and ρ2 = O(α1−2/k) (Lemma 3.3.15). Resilience plays a crucial role in

robust statistics, where the resilience of a dataset determines the minimax sample complexity

of estimating population statistics from adversarially corrupted samples [186, 217].

In the context of differential privacy, our design of HPTR is guided by our analysis

showing that the sensitivity of one-dimensional robust statistics is fundamentally governed

by resilience. Leveraging this three-way connection between the use of robust statistics in the

algorithm, the resilience of the data, and the sensitivity of the distance DS(µ̂) is crucial in

achieving near-optimal utility.

Concretely, we consider α as a free parameter that we can choose depending on the target

accuracy. For example, let ∥Σ−1/2(µ̂− µ)∥ = 32ρ1 be our target accuracy. Note that we did

not optimize the constants in our analysis, and they can be further tightened. In the case of

sub-Gaussian distributions, we have ρ1 = C ′α
√
log(1/α) w.h.p. when the sample size is large

enough. This determines the value of α that achieves the target accuracy and also the choice

of ∆ and τ , as follows.

The robust statistics of a resilient dataset (i.e., one with small resilience) cannot change too

much when a small fraction of the dataset is changed. This is made precise in Lemma 3.3.11,

which shows, for example, that the robust mean µv(Mv,α) can change only by O(ρ1/(αn))

when one data point is arbitrarily changed. This implies the sensitivity of DS(µ̂) is also

small: ∆ = O(ρ1/(αn)). Choosing τ = 42ρ1 to be larger by a constant factor from the target

accuracy, we show that a sample size of n = O(d/(εα)) is sufficient to achieve the desired

utility.

Theorem 19 (Utility guarantee for mean estimation). There exist positive constants c and

C such that for any (α, ρ1, ρ2)-resilient set S with respect to some (µ ∈ Rd,Σ ≻ 0) satisfying

α ∈ (0, c), ρ1 < c, ρ2 < c, and ρ21 ≤ cα, HPTR with the choices of the distance function in

Eq. (3.4), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves ∥Σ−1/2(µ̂ − µ)∥ ≤ 32ρ1 with probability
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1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
.

This theorem shows how a resilient dataset (which is a deterministic condition) implies

small error for HPTR. We make formal connections to standard assumptions on the sample

generating distributions and their respective resiliences in Section 3.3.3, where we also

discuss the optimality of this utility guarantee. For example, sub-Gaussian distributions

have ρ1 = O(α
√

log(1/α)) when n ≥ C ′d/(α log(1/α))2 for any α smaller than a universal

constant. This implies that HPTR achieves a target accuracy of ∥Σ−1/2(µ̂− µ)∥ ≤ α̃ with

sample size Õ( d
α̃2 +

d
α̃ε
), where Õ hides logarithmic factors in 1/α, δ, and ζ. We explain the

intuition behind our analysis and provide a complete proof in Sections 3.3.2.2–3.3.2.6. One

by-product of using robust statistics is that we get robustness for free, as we next show.

3.3.2.1 Robustness of HPTR

One by-product of using robust statistics is that HPTR is also robust to adversarial corruption.

We therefore provide a more general guarantee that simultaneously achieves DP and robustness.

Suppose we are given a dataset S that is a corrupted version of a resilient dataset Sgood.

Assumption 3 (αcorrupt-corruption). Given a set Sgood = {x̃i ∈ Rd}ni=1 of n data points, an

adversary inspects all data points, selects αcorruptn of the data points, and replaces them with

arbitrary dataset Sbad of size αcorruptn. The resulting corrupted dataset is called S = {xi ∈

Rd}ni=1.

This adaptive adversary is strong since the corruption can adapt to the entire dataset (for

example, it covers the Huber contamination model [115] and the non-adaptive adversarial

model [151]). This threat model is now standard in robust statistics literature [186]. If

the original Sgood is resilient, we show that the same guarantee as Theorem 19 holds under

corruption up to an αcorrupt fraction of Sgood for sufficiently small αcorrupt ≤ (1/5.5)α. The

factor 1/5.5 is due to the fact that the algorithm treats some of the good data points as
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outliers (which is at most 4αcorrupt due to the top and bottom tails cut in the definition

of Mv,(2/5.5)α), and we need to handle neighboring datasets up to (0.5/5.5)αn Hamming

distance. Hence, we need to ensure resilience for α that is at least 5.5 times larger than the

corruption αcorrupt.

Definition 3.3.3 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2)-corrupt good

with respect to (µ,Σ) if it is an αcorrupt-corruption of an (α, ρ1, ρ2)-resilient dataset Sgood.

We get the following theorem showing that HPTR can tolerate up to (1/5.5)α fraction of

the data being arbitrarily corrupted.

Theorem 20 (Robustness). There exist positive constants c and C such that for any

((2/11)α, α, ρ1, ρ2)-corrupt good set S with respect to (µ ∈ Rd,Σ ≻ 0) satisfying α < c,

ρ1 < c, ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function in Eq. (3.4), ∆ = 110ρ1/(αn),

and τ = 42ρ1 achieves ∥Σ−1/2(µ̂− µ)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
.

In Sections 3.3.2.2–3.3.2.6, we prove this more general result. When there is no adversarial

corruption, Theorem 19 immediately follows as a special case by selecting α as a free parameter

depending on the target accuracy. The constants in all the theorems can be improved if we

track them more carefully, and we did not attempt to optimize them in this work.

3.3.2.2 Proof strategy for Theorem 20

We show in Section 3.3.2.5 that the robust one-dimensional statistics, µv(Mv,α) and σ2
v(Mv,α),

have small sensitivity if the dataset is resilient. Consequently, DS(µ̂) has a small local

sensitivity, i.e., the sensitivity is small if restricted to µ̂ close to µ and if the dataset is resilient.

To ensure DP, we run Release only when those two locality conditions are satisfied; we first

Propose the sensitivity ∆ and a threshold τ , and then we Test that DP guarantees are

met on the given dataset with those choices. Resilient datasets (i) pass this safety test with

a high probability and (ii) achieve the desired accuracy, both of which rely on our general
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analysis of HPTR with a general distance function (Theorem 28). We give sketches of the

main steps below.

One-dimensional robust statistics have small sensitivity on resilient datasets.

Consider the robust projected mean µv(Mv,α) for some small enough α > 0. If S is (α, ρ1, ρ2)-

resilient, then the following technical lemma shows that the top and bottom (2/5.5)α-tails

cannot deviate too much from the mean.

Lemma 3.3.4 (Lemma 10 from [186]). For a (α, ρ1, ρ2)-resilient dataset S with respect to

(µ,Σ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of size at least α̃n and

for any unit norm v ∈ Rd: ∣∣∣ 1|T |∑
xi∈T

⟨v, xi − µ⟩
∣∣∣ ≤ 2− α̃

α̃
ρ1 σv , and (3.8)

∣∣∣ 1|T |∑
xi∈T

(
⟨v, xi − µ⟩2 − σ2

v

)∣∣∣ ≤ 2− α̃
α̃

ρ2 σ
2
v . (3.9)

Under the definitions in Eq. (3.4), the top (2/5.5)α-tail denoted by Tv,α and bottom

(2/5.5)α-tail denoted by Bv,α have the empirical means that are no more than O(σvρ1/α)

away from the true projected mean µv, respectively. It follows that there exists at least one

data point in Tv,α and one data point in Bv,α that are no more than O(σvρ1/α) away from µv.

This implies that the range of the middle subsetMv,α is provably bounded by O(σvρ1/α),

and the sensitivity of the robust mean µv(Mv,α) is guaranteed to be O(σvρ1/(αn)). We

can similarly show that σ2
v(Mv,α) has sensitivity O(σ2

vρ
2
1/(α

2n)), as shown in Eq. (3.19).

Note that these sensitivity bounds are local in the sense that they require the data to be

(α, ρ1, ρ2)-resilient.

Small local sensitivity of DS(µ̂). Under the above sensitivity bounds for µv(Mv,α) and

σ2
v(Mv,α), it follows after some calculations as shown in Eq. (3.20) that the sensitivity for a

resilient dataset S is bounded by

|DS(µ̂)−DS′(µ̂) | ≤ C ′ ρ1
αn

(
1 +

ρ1∥Σ−1/2(µ̂− µ)∥
α

)
, (3.10)
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for some constant C ′ and all neighboring datasets S ′, assuming ρ2 is sufficiently small.

Note that this sensitivity bound is local for two reasons; for this sensitivity to be small

(i.e. O(ρ1/(αn))), we require S to be resilient and µ̂ to be close to µ. Thus, the meaning of

local here is two fold, while traditionally local sensitivity in the privacy literature only concerns

the sensitivity of a particular dataset S. We handle these two localities with the Test step,

among other things, checks that the DP conditions are satisfied for the given dataset and

the choice of ∆ and τ , which bounds the support of the exponential mechanism to be within

Bτ,S = {µ̂ : DS(µ̂) ≤ τ} with a choice of τ = O(ρ1). Consequently, we require ρ21/α≪ 1 for

the second term in Eq. (3.10) to be dominated by the first. Fortunately, this is indeed true

for all scenarios of interests to us. For sub-Gaussian distributions, ρ21 = α2 log(1/α)≪ α. For

k-th moment bounded distributions with k > 3, ρ21 = α2−2/k ≪ α. For covariance bounded

distributions, we do not hope to get a Mahalanobis distance guarantee. Instead, we aim for a

Euclidean distance guarantee whose sensitivity does not depend on µ̂, and we do not require

ρ21/α≪ 1 (Section 3.3.3.3).

Sample complexity analysis. Assuming the sensitivity of DS(µ̂) is bounded by ∆ =

O(ρ1/(αn)), which we ensure with the safety test, we analyze the utility of the exponential

mechanism. For a target accuracy of ∥Σ−1/2(µ̂− µ)∥ = O(ρ1), we consider two sets Bout =

{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c0ρ1} and Bin = {µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c1ρ1} for some c0 > c1. The

exponential mechanism achieves accuracy c0ρ1 with probability 1− ζ if

P(µ̂ /∈ Bout) ≤
P(µ̂ /∈ Bout)

P(µ̂ ∈ Bin)
≲

Vol(Bτ,S)

Vol(Bin)

e−
ε

4∆
c0ρ1

e−
ε

4∆
c1ρ1
≤ eO(d)e−

ε
4∆

(c0−c1)ρ1 ≤ ζ ,

where the second inequality requires DS(µ̂) ≃ ∥Σ−1/2(µ̂−µ)∥, which we show in Lemma 3.3.6.

Since the volume ratio is Vol(Bτ,S)/Vol(Bout) = eO(d), τ = O(ρ1), and ∆ = O(ρ1/(αn)), it

is sufficient to have a large enough c0 and n = O((d+ log(1/ζ))/(αε)) with a large enough

constant.

Safety test. We are left to show that for a resilient dataset, the failure probability of the

safety test, P(mτ +Lap(2/ε) < (2/ε) log(2/δ)), is less than ζ. This requires the safety margin

to be large enough, i.e., mτ ≥ k∗ = (2/ε) log(4/(δζ)). Recall that the safety margin is defined
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as the Hamming distance to the closest dataset to S where the (ε/2, δ/2)-DP condition of

the exponential mechanism is violated. We therefore need to show that the DP condition is

satisfied not only for S but for any dataset S ′ at Hamming distance at most k∗ from S.

Consider two exponential mechanisms, r(ε,∆,τ,S′) and r(ε,∆,τ,S′′), on neighboring datasets

S ′ and S ′′. Since Bτ,S′ ≠ Bτ,S′′ , we separately analyze the intersection Bτ,S′ ∩Bτ,S′′ and the

differences Bτ,S′ \Bτ,S′′ and Bτ,S′′ \Bτ,S′ . In the intersection, we show that the two probability

distributions are within a multiplicative factor eε/2 of each other:

Pr(ε,∆,τ,S′)
(µ̂ ∈ A) ≤ eε/2Pr(ε,∆,τ,S′′)

(µ̂ ∈ A)

for all A ⊆ Bτ,S′ ∩ Bτ,S′′ , S ′ within Hamming distance k∗ from a resilient dataset S, and

S ′′ ∼ S ′. The main challenge is that S ′ is no longer a resilient dataset but a k∗-neighbor

of a resilient dataset. Since such S ′ is (k∗/n, α, ρ1, ρ2)-corrupt good (Definition 3.3.3), we

show that corrupt good sets also inherit the bounded local sensitivity of a resilient dataset

seamlessly, as shown in Lemma 3.3.11.

In the set difference, we show that the total probability mass, Pr(ε,∆,τ,S)
(µ̂ ∈ Bτ,S \Bτ,S′)

and Pr(ε,∆,τ,S′)
(µ̂ ∈ Bτ,S′ \Bτ,S), are bounded by δ, respectively, as long as the overlap of the

two supports are large enough. This requires τ ≫ ∆k∗, as we show in Appendix B.1.1, which

is satisfied for n ≥ (log(1/(δζ))/(αε)).

Outline. The analyses for the accuracy and the safety test build upon a universal analysis

of HPTR in Theorem 28, which holds more generally for any distance function Dϕ(θ̂) in the

estimation problems of interest. For mean estimation, we show in Sections 3.3.2.3-3.3.2.5 that

the sufficient conditions of Theorem 28 are met for the choices of constants and parameters:

ρ = ρ1, c0 = 31.8, c1 = 10.2, k∗ = (2/ε) log(4/(δζ)), τ = 42ρ1, and ∆ = 110ρ1/(αn). We

can set c2 to be a large constant and will only change the constant factor in the sample

complexity, which we do not track. A proof of Theorem 20 is provided in Section 3.3.2.6, from

which Theorem 19 follows immediately. All the lemmas assume ((1/5.5)α, α, ρ1, ρ2)-corrupt

good set S, α ≤ 0.015, ρ1 ≤ 0.013, and ρ2 ≤ 0.0005. We omit this assumption in stating the

lemmas for brevity.
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3.3.2.3 Resilience implies robustness

For the assumption (d) in Theorem 28, we show that DS(µ̂) is a good approximation of the

true distance ∥Σ−1/2(µ̂− µ)∥ in Lemma 3.3.6. We first show that the one-dimensional mean

and the variance of the filtered outMv,α are robust.

Lemma 3.3.5. For any unit norm v ∈ Rd, |⟨v, µ − µ(Mv,α)⟩| ≤ 6ρ1 σv and 0.9σv ≤

σv(Mv,α) ≤ 1.1σv.

Proof. For the mean bound,

|⟨v, µ− µ(Mv,α)⟩|

≤ |Mv,α ∩ Sbad|
|Mv,α|

|⟨v, µ(Sbad ∩Mv,α)− µ⟩|+
|Mv,α ∩ Sgood|
|Mv,α|

|⟨v, µ(Sgood ∩Mv,α)− µ⟩|

≤ (1/5.5)α

1− (4/5.5)α

2ρ1σv
(1/5.5)α

+
1− (1/5.5)α

1− (4/5.5)α
ρ1σv

≤ (2ρ1 + ρ1)σv/(1− (4/5.5)α) . (3.11)

The second inequality follows from the following. First, |⟨v, µ(Sgood ∩Mv,α)− µ⟩| ≤ σvρ1 by

the definition of resilience and that fact that |Sgood ∩Mv,α| ≥ (1− (5/5.5)α)n. Next, since

|⟨v, µ(Sbad ∩Mv,α) − µ⟩| is less than |⟨v, µ(Sgood ∩ Tv,α) − µ⟩| or |⟨v, µ(Sgood ∩ Bv,α) − µ⟩|,

both of which are at most 2ρ1σv/(1/5.5)α, from applying Lemma 3.3.4 with a set size at least

(1/5.5)αn, we have

|⟨v, µ(Sbad ∩Mv,α)− µ⟩| ≤
2

(1/5.5)α
ρ1σv .

The mean bound follows from (3.11) and α ≤ 0.1. For the variance upper bound,

σv(Mv,α)
2 =

1

(1− (4/5.5)α)n

∑
xi∈Mv,α

⟨v, xi − µ(Mv,α)⟩2 ≤
1

(1− (4/5.5)α)n

∑
xi∈Mv,α

⟨v, xi − µ⟩2 ,

where the first inequality follows from the fact that subtracting the empirical mean µ(Mv,α)

minimizes the second moment. We can decompose the empirical deviation and show an upper
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bound first: ∑
xi∈Mv,α

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n

=

∑
xi∈Mv,α∩Sbad

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n
+

∑
xi∈Mv,α∩Sgood

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n

≤ (1/5.5)α(2ρ2/(1/5.5)α)σ
2
v + (1− (4/5.5)α)ρ2σ

2
v

1− (4/5.5)α
≤ 6ρ2σ

2
v , (3.12)

where in the second inequality we used resilience onMv,α ∩Sgood of size at least 1− (5/5.5)α.

For xi ∈ Sbad ∩Mv,α, we use the fact that

∣∣ ⟨v, xi − µ⟩2 − σ2
v

∣∣ ≤ max
{∑

j∈Sgood∩Tv,α(⟨v, xj − µ⟩
2 − σ2

v)

|Sgood ∩ Tv,α|
,

∑
j∈Sgood∩Bv,α

(⟨v, xj − µ⟩2 − σ2
v)

|Sgood ∩ Bv,α|

}
≤ 2ρ2σ

2
v

(1/5.5)α
,

where we used Eq. (3.9) in Lemma 3.3.4 for sets with size at least (1/5.5)αn. For the variance

deviation lower bound,∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2
v)

(1− (4/5.5)α)n
=

∑
xi∈Mv,α

(
⟨v, xi − µ⟩2 − σ2

v − ⟨v, µ− µ(Mv,α)⟩2
)

(1− (4/5.5)α)n

≥
∑

xi∈Mv,α∩Sbad
(⟨v, xi − µ⟩2 − σ2

v)

(1− (4/5.5)α)n
+

∑
xi∈Mv,α∩Sgood

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n
− 36ρ21σ

2
v ,

≥ − 2ρ2σ
2
v

1− (4/5.5)α
− 1− (4/5.5)α

1− (4/5.5)α
ρ2σ

2
v − 36ρ21σ

2
v ≥ −(3.2ρ2 + 36ρ21)σ

2
v , (3.13)

where we used α ≤ 0.1, the first term only uses the fact that |Sbad| ≤ (1/5.5)αn, the

second term uses resilience, and the last term uses the mean bound we proved earlier.

In (3.12) and (3.13), assuming ρ1 ≤ 0.04, and ρ2 ≤ 0.035, we have
√
1 + 6ρ2 ≤ 1.1 and√

1− 3.2ρ2 − 36ρ21 ≥ 0.9.

We show that resilience implies our estimate of the distance is robust.

Lemma 3.3.6. If µ̂ ∈ Bτ,S and τ = 42ρ1, then
∣∣ ∥Σ−1/2(µ̂− µ)∥ −DS(µ̂)

∣∣ ≤ 6ρ1 + 0.1τ ≤

10.2ρ1.
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Proof. From Lemma 3.3.5, we know that for all µ̂ ∈ Bt,S,

DS(µ̂) = max
∥v∥=1

⟨v, µ̂− µ(Mv,α)⟩
σv(Mv,α)

≥ max
∥v∥=1

⟨v, µ̂− µ⟩ − 6ρ1σv
1.1σv

. (3.14)

and

DS(µ̂) = max
∥v∥=1

⟨v, µ̂− µ(Mv,α)⟩
σv(Mv,α)

≤ max
∥v∥=1

⟨v, µ̂− µ⟩+ 6ρ1σv
0.9σv

. (3.15)

Applying Lemma 3.3.1, we get 0.9DS(µ̂)− 6ρ1 ≤ ∥Σ−1/2(µ̂− µ)∥ ≤ 1.1DS(µ̂) + 6ρ1. Since

DS(µ̂) ≤ τ , we get the desired bound.

3.3.2.4 Bounded volume

We show that the assumption (a) in Theorem 28 is satisfied for robust estimate DS(µ̂).

Lemma 3.3.7. For ρ = ρ1, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12) +

log((c0 + 2c1)/c1), we have (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2d , and

Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ (c0 + 2c1)ρ})
Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c1ρ})

≤ ec2d .

Proof. The second part of assumption (a) follows from the fact that

Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ r}) = cd|Σ|rd ,

where |Σ| =
∏d

j=1 σj(Σ) is the determinant of Σ and σj(Σ) is the j-th singular value for some

constant cd that depends only on the dimension and selecting c2 ≥ log((c0 + 2c1)/c1).

The first part is tricky since we do not yet have a handle on the set Bt,S for t > τ . In

particular, we do not know how DS(µ̂) relates to ∥Σ−1/2(µ̂− µ)∥ for such a µ̂ outside of Bτ,S.

To this end, we use the following corollary.
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Corollary 3.3.8 (Corollary of Lemma 3.3.6). If µ̂ ∈ B2τ,S and τ = 42ρ1, then
∣∣ ∥Σ−1/2(µ̂−

µ)∥ −DS(µ̂)
∣∣ ≤ 14.2ρ1.

We will show that (7/8)τ − (k∗ + 1)∆ > 0. Since this implies that τ + (k∗ + 1)∆ ≤ 2τ , we

can use the above corollary to show that

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤

Vol
(
{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ τ + (k∗ + 1)∆ + c1ρ+ 14.2ρ1}

)
Vol
(
{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ (7/8)τ − (k∗ + 1)∆− c1ρ− 14.2ρ1}

)
=

( τ + (k∗ + 1)∆ + c1ρ+ 14.2ρ1
(7/8)τ − (k∗ + 1)∆− c1ρ− 14.2ρ1

)d
≤ (67/12)d ≤ ec2d ,

for the choices of ρ = ρ1, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12), where

we used the fact that for n ≥ C log(1/(δζ))/(αε) with a large enough constant C, we have

(k∗ + 1)∆ ≤ 0.3ρ1. It follows that the condition (7/8)τ − (k∗ + 1)∆ > 0 is also satisfied.

3.3.2.5 Resilience implies bounded local sensitivity

We show that resilience implies the assumption (b) in Theorem 28 (Lemma 3.3.11). However,

since local sensitivity needs to be established first for not just the given set S but also

Hamming distance k∗ + 1 neighborhood of S, we need robustness results for this broader

regime. Assuming (k∗+1)/n ≤ α/11, we can extend robustness results analogously, as follows.

We consider a set S ′ with k data points arbitrarily changed from S. This implies that S ′

is a ((1/5.5)α+ (k/n), α, ρ1, ρ2)-corrupt good set with respect to (µ,Σ). We first prove the

analogous bounds to Lemma 3.3.5 for this S ′.

Lemma 3.3.9. For an ((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good set S ′ with respect to (µ,Σ),

α̃ ≤ (1/11)α, and any unit norm v ∈ Rd, |⟨v, µ − µ(Mv,α)⟩| ≤ 14ρ1 σv and 0.9σv ≤

σv(Mv,α) ≤ 1.1σv.

Proof. Analogous to (3.11), we have

|⟨v, µ− µ(Mv,α)⟩| ≤
(1/5.5)α + α̃

1− (4/5.5)α

2ρ1σv
(1/5.5)α− α̃

+
1− (1/5.5)α− α̃
1− (4/5.5)α

ρ1σv

≤ 14ρ1σv ,
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where we used the fact that (5/5.5)α + α̃ ≤ α. Analogous to (3.12), we have∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2
v)

(1− (4/5.5)α)n
≤

((1/5.5)α + α̃)( 2ρ2
(1/5.5)α−α̃

)σ2
v + (1− (1/5.5)α− α̃)ρ2σ2

v

1− (4/5.5)α

≤ 14ρ2σ
2
v .

Analogous to (3.13), we have∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2
v)

(1− (4/5.5)α)n
≥ − ((1/5.5)α + α̃)2ρ2σ

2
v

(1− (4/5.5)α)((1/5.5)α− α̃)
− ρ2σ2

v − 142ρ21σ
2
v

≥ −(7.3ρ2 + 196ρ21)σ
2
v .

For α ≤ 0.045, ρ1 ≤ 0.013, and ρ2 ≤ 0.0005, we have the desired bounds.

Lemma 3.3.10. For an ((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good set S ′ with respect to (µ,Σ)

and α̃ ≤ (1/11)α, if µ̂ ∈ Bt,S′ for some t > 0 then we have ∥Σ−1/2(µ̂− µ)∥ ≤ 14ρ1 + 1.1t and∣∣D(µ̂, S ′)− ∥Σ−1/2(µ̂− µ)∥
∣∣ ≤ 14ρ1 + 0.1t.

Proof. Analogously to the proof of Lemma 3.3.6, we have

1.1D(µ̂, S ′) ≥ −14ρ1 + ∥Σ−1/2(µ̂− µ)∥ , and

0.9D(µ̂, S ′) ≤ 14ρ1 + ∥Σ−1/2(µ̂− µ)∥ .

This gives the desired bound.

The sensitivity of DS(µ̂) is local in two ways. First, we get the desired sensitivity bound

for a dataset S that behaves nicely, which is captured by the notion of a ((1/5.5)α, α, ρ1, ρ2)-

corrupt good set S. Second, the sensitivity bound requires the estimate parameter µ̂ to be

close to µ in ∥Σ−1/2(µ̂− µ)∥. Both locality in dataset and locality in estimate are ensured by

the safety test (Test step in HPTR). To show that corrupt good datasets pass the safety test,

the following lemma establishes that those datasets have small local sensitivity.

Lemma 3.3.11. For ∆ = 110ρ1/(αn), τ = 42ρ1, and an ((1/5.5α), α, ρ1, ρ2)-corrupt good S,

if

n = Ω
( log(1/(δζ))

αε

)
, (3.16)

then the local sensitivity in assumption (b) is satisfied.
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Remark. Note that to keep ∆ = O(ρ1/(αn)) that we want (and is critical in getting the

final utility guarantee), we need the extra corruption to be k∗/n = O(α). This implies

n = Ω(k∗/α) = Ω(log(1/(δζ))/(εα)). Further, k∗ = Ω(log(1/(δζ))/ε) cannot be improved

since it is critical in achieving a small failure probability in the Testing step. Hence, the sample

complexity of Ω(log(1/(δζ))/(εα)) cannot be improved under the current proof strategy.

Proof. Since S is ((1/5.5)α, α, ρ1, ρ2)-corrupt good and dH(S, S
′) ≤ k∗, it follows that S ′ is

((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good with α̃ = (k∗/n). We further assume that α̃ ≤ (1/11)α,

which follows from k∗ = (2/ε) log(4/(δζ)) and n = Ω(log(1/δζ)/(εα)) with a large enough

constant. We show that this resilience implies that S ′ is dense around the boundary ofMv,α,

which in turn implies low sensitivity.

Recall that Tv,α ⊂ S is the set of data points corresponding to the largest (2/5.5)αn

data points in the projected set S ′
(v) = {⟨v, xi⟩}xi∈S′ , and Bv,α ⊂ S is the bottom set.

Let Sgood denote the original uncorrupted resilient dataset. Applying Lemma 3.3.4 to

Sgood ∩Tv,α (and Sgood ∩Bv,α) of size at least (1/11)α (since the corruption fraction is at most

(1/5.5)α + α̃ ≤ (1.5/5.5)α),∣∣ ⟨v, µ(Sgood ∩ Tv,α)− µ⟩
∣∣ ≤ 2ρ1σv

(1/11)α
, and

∣∣ ⟨v, µ(Sgood ∩ Bv,α)− µ⟩
∣∣ ≤ 2ρ1σv

(1/11)α
.

This implies that there is at least one good data point that is closer to the center than the

means of the upper tail and the bottom tail:

min
xi∈Sgood∩Tv,α

∣∣ ⟨v, xi − µ⟩ ∣∣ ≤ 2ρ1σv
(1/11)α

, and min
xi∈Sgood∩Bv,α

∣∣ ⟨v, xi − µ⟩ ∣∣ ≤ 2ρ1σv
(1/11)α

.

It follows that the distance between two closest points in Tv,α and Bv,α is bounded by

min
xi∈Sgood∩Tv,α

⟨v, xi⟩ − max
xi∈Sgood∩Bv,α

⟨v, xi⟩ ≤ (44/α)ρ1σv , (3.17)

when µ ∈Mv,α. When µ ∈ Tv,α or µ ∈ Bv,α, it is straightforward that the above inequality

holds. This implies low sensitivity as follows.

Recall that Mv,α(S
′) denotes the middle part after filtering out the top and bottom

(2/5.5)α quantiles from {⟨v, xi⟩}xi∈S′ . For a neighboring dataset S ′′ and the corresponding S ′′
(v),
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consider a scenario where one point xi inMv,α(S
′) is replaced by another point x̃i. If ⟨v, x̃i⟩ ∈

[ maxxi∈Sgood∩Bv,α⟨v, xi⟩ , minxi∈Sgood∩Tv,α⟨v, xi⟩ ], then Eq. (3.17) implies that |⟨v, xi − x̃i⟩| ≤

(44/α)ρ1σv. Otherwise,Mv,α(S
′′) will have xi replaced by either argminj∈Sgood∩Tv,α⟨v, xj⟩ or

argmaxj∈Sgood∩Bv,α⟨v, xj⟩. In either case, Eq. (3.17) implies that |⟨v, xi − x̃i⟩| ≤ (44/α)ρ1σv.

The other case of when the replaced sample xi ∈ S is not inMv,α follows similarly.

From this, we get the following bounds on the sensitivity of the robust mean and robust

variance. Note that using robust statistics is critical in getting such small sensitivity bounds.

Let µ′ = µ(Mv,α(S
′)) and µ′′ = µ(Mv,α(S

′′)), where we write the dataset S ′ in Mv,α(S
′)

explicitly, ∣∣ ⟨v, µ′ − µ′′⟩
∣∣ ≤ 44ρ1σv

α(1− (4/5.5)α)n
. (3.18)

For the variance bound, let σ′2
v = σ2

v(Mv,α(S
′)) = (1/|Mv,α(S

′)|)
∑

x′
i∈Mv,α(S′)⟨v, x′i −

µ′⟩2 and σ′′2
v = σ2

v(Mv,α(S
′′)). Since (1 − (4/5.5)α)nσ′2

v =
∑

x′
i∈Mv,α(S′)⟨v, x′i − µ′⟩2 =∑

x′
i∈Mv,α(S′)(⟨v, x′i−µ′′⟩2−⟨v, µ′′−µ′⟩2), we have (1−(4/5.5)α)n(σ′2

v −σ′′2
v ) =

∑
x′
i∈Mv,α(S′)⟨v, x′i−

µ′′⟩2−
∑

x′′
i ∈Mv,α(S′′)⟨v, x′′i −µ′′⟩2−(1−(4/5.5)α)n⟨v, µ′′−µ′⟩2. We bound each term separately.

Note thatMv,α(S
′) andMv,α(S

′′) only differ in at most one data point. We denote those by

x′ and x′′, respectively. Then,∣∣∣ ∑
x′
i∈Mv,α(S′)

⟨v, x′i − µ′′⟩2 −
∑

x′′
i ∈Mv,α(S′′)

⟨v, x′′i − µ′′⟩2
∣∣∣ = ∣∣ ⟨v, x′ − µ′′⟩2 − ⟨v, x′′ − µ′′⟩2

∣∣
=
∣∣ ⟨v, x′ + x′′ − 2µ′′⟩⟨v, x′ − x′′⟩

∣∣
=
∣∣ ⟨v, x′ − µ′⟩+ ⟨v, µ′ − µ′′⟩+ ⟨v, x′′ − µ′′⟩

∣∣ ∣∣⟨v, x′ − x′′⟩ ∣∣
≤ 3

(44ρ1σv
α

)2
,

and

(1− (4/5.5)α)n⟨v, µ′ − µ′′⟩2 ≤ (1− (4/5.5)α)n
(44ρ1σv)

2

(α(1− (4/5.5)α)n)2
.

This implies that

|σ′2
v − σ′′2

v | ≤
(44ρ1(α/2)σv)

2

(1− (4/5.5)α)nα2

(
3 +

1

(1− (4/5.5)α)n

)
≤ 4(44ρ1σv)

2

(1− (4/5.5)α)nα2
. (3.19)
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Together, we get the following bound on the sensitivity of D(µ̂, S ′). Since maxv av−maxv bv ≤

maxv |av − bv|, we have

∣∣DS′(µ̂)−DS′′(µ̂)
∣∣ ≤ max

v:∥v∥=1

∣∣∣⟨v, µ̂− µ′⟩
σ′
v

− ⟨v, µ̂− µ
′′⟩

σ′′
v

∣∣∣
≤ max

v:∥v∥=1

|⟨v, µ′ − µ′′⟩|
σ′
v

+
|⟨v, µ̂− µ′′⟩|

σv

∣∣∣σv
σ′
v

− σv
σ′′
v

∣∣∣
≤ 44ρ1

0.9α(1− (4/5.5)α)n
+ ∥Σ−1/2(µ̂− µ′′)∥max

v

σv
σ′
vσ

′′
v (σ

′
v + σ′′

v )
|σ′2

v − σ′′2
v |

≤ 44ρ1
0.9α(1− (4/5.5)α)n

+
5312ρ21

α2(1− (4/5.5)α)n
∥Σ−1/2(µ̂− µ′′)∥ ,

where we used triangular inequality in the second inequality and the third inequality follows

from σ′
v ≥ 0.9σv (Lemma 3.3.9), Eqs. (3.18), and Lemma 3.3.1, and the last inequality follows

from σ′′
v ≥ 0.9σv and (3.19).

From Lemma 3.3.10, µ̂ ∈ Bτ+(k∗+3)∆,S implies ∥Σ−1/2(µ̂−µ)∥ ≤ 14ρ1+1.1(τ +(k∗+3)∆).

From Lemma 3.3.9, ∥Σ−1/2(µ− µ′′)∥ ≤ 14ρ1. We apply triangular inequality and show that

∥Σ−1/2(µ̂− µ′′)∥ ≤ cα/ρ1 for the choices of ∆, k∗, τ and n, with an arbitrarily small constant

c:

∥Σ−1/2(µ̂− µ′′)∥ ≤ 28ρ1 + 1.1(τ + (k∗ + 3)∆)

≤ Cρ1 + C
ρ1 log(1/(δζ))

εαn

≤ 2Cρ1 ,

for some constant C > 0, where ∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), and

n ≥ C ′ log(1/(δζ))/(ε α). Under the assumption that ρ21 ≤ cα and α ≤ c for some small

enough c, this implies

|DS′(µ̂)−DS′′(µ̂)| ≤ 44ρ1
0.9(1− (4/5.5)α)αn

(
1 +

121ρ1
α

2Cρ1

)
≤ (44/0.9)ρ1

αn

1 + 44c

1− (4/5.5)c
≤ ∆ =

110ρ1
αn

. (3.20)
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3.3.2.6 Proof of Theorem 20

We show that the sufficient conditions of Theorem 28 are met for the following choices of

constants and parameters: p = d, ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, and ∆ = 110ρ1/(αn).

We can set c2 to be a large constant and will only change the constant factor in the sample

complexity.

The assumptions (a), (b), and (d) follow from Lemmas 3.3.7, 3.3.11, and 3.3.6, respectively.

Assumption (c) follows from

∆ =
110ρ1
αn

≤ 1.2ρ1ε

32(c2d+ (ε/2) + log(16/(δζ)))
=

(c0 − 3c1)ρε

32(c2d+ (ε/2) + log(16/(δζ)))
,

for a large enough n ≥ C ′(d+ log(1/(δζ)))/(αε). This finishes the proof of Theorem 20, from

which Theorem 19 immediately follows.

3.3.3 Step 3: Near-optimal guarantees

We provide utility guarantees for popular families of distributions in private or robust mean

estimation literature: sub-Gaussian [25, 150, 186, 217, 139, 129, 40, 36, 32, 4, 34, 62, 64,

73, 106, 66, 114], k-th moment bounded [25, 150, 186, 217, 135], and covariance bounded

[25, 150, 186, 217, 135, 73, 105, 57, 58]. We apply known resilience bounds for each family of

distributions and substitute them in Theorems 19 and 20. In all cases, the resulting sample

complexity is near-optimal, which follows from matching information-theoretic lower bounds.

Since we aim for Mahalanobis distance error bounds, the corresponding mean resilience

we need in Definition 3.3.2 scales linearly in the projected standard deviation. For sub-

Gaussian distributions, this requires the projected variance v⊤Σv to be lower bounded

by how fast the tail is decreasing, as captured by the sub-Gaussian proxy Ω(v⊤Γv) in

Eq. (3.21) (Section 3.3.3.1). For k-th moment bounded distributions with k > 3, this requires

the projected variance to be lower bounded by Ω(E[|⟨v, x − µ⟩|k]2/k), a condition known

as hypercontractivity (Section 3.3.3.2). When we do not have such lower bounds on the

covariance, HPTR can only hope to achieve Euclidean distance error bounds. Under our
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design principle, this translates into the choice of DS(µ̂) = max∥v∥≤1⟨v, µ̂⟩ − µv(Mv,α). We

give an example of this scenario with covariance bounded distributions (Section 3.3.3.3).

3.3.3.1 Sub-Gaussian distributions

We say a distribution P is sub-Gaussian with proxy Γ if for all ∥v∥ = 1 and t ∈ R,

Ex∼P

[
exp(t ⟨v, x⟩)

]
≤ exp

(t2 v⊤Γv
2

)
. (3.21)

Under this standard sub-Gaussianity, we are only guaranteed mean resilience of Eq. (3.6),

for example, with R.H.S scaling as ρ1
√
v⊤Γv instead of ρ1

√
v⊤Σv. This implies that the

Mahalanobis distance of any robust estimate can be made arbitrarily large by shrinking

the covariance in one direction such that v⊤Σv ≪ v⊤Γv. To avoid such degeneracy, we

add an additional assumption that Σ ⪰ cΓ, which is also common in robust statistics

literature, e.g., [121]. With this definition, it is known that sub-Gaussian samples are

(α,O(α
√
log(1/α)), O(α log(1/α)))-resilient.

Lemma 3.3.12 (Resilience of sub-Gaussian samples [217] and [121, Corollary 4]). For any

fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a sub-Gaussian

distribution with mean µ, covariance Σ, and a sub-Gaussian proxy 0 ≺ Γ ⪯ c1Σ for a constant

c1. There exist constants c2 and c3 > 0 such that if n ≥ c2((d+log(1/ζ))/(α log(1/α))2), then

S is (α, c3α
√
log(1/α), c3α log(1/α))-resilient with respect to (µ,Σ) with probability 1− ζ.

This lemma and Theorem 19 imply the following utility guarantee. Further, from Theo-

rem 20, the guarantee also holds under α-corruption of the i.i.d. samples from a sub-Gaussian

distribution.

Corollary 3.3.13. Under the hypothesis of Lemma 3.3.12, there exists a constant c > 0 such

that for any α ∈ (0, c), a dataset of size

n = O
( d+ log(1/ζ)

(α log(1/α))2
+
d+ log(1/(δζ))

αε

)
,
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sensitivity of ∆ = O((1/n)
√

log(1/α)), and threshold of τ = O(α
√
log(1/α)), with large

enough constants are sufficient for HPTR(S) with the distance function in Eq. (3.4) to achieve

∥Σ−1/2(µ̂− µ)∥ = O(α
√
log(1/α)) (3.22)

with probability 1− ζ. Further, the same guarantee holds even if α-fraction of the samples is

arbitrarily corrupted, as shown in Assumption 3.

This sample complexity is near-optimal up to logarithmic factors in 1/α and 1/ζ for

δ = e−O(d). Even for DP mean estimation without corrupted samples, HPTR is the first

algorithm for sub-Gaussian distributions with unknown covariance that nearly matches

the lower bound of n = Ω̃(d/α2 + d/(αε) + log(1/δ)/ε) from [139, 129], where Ω̃ hides

polylogarithmic terms in 1/ζ, 1/α, d, 1/ε and log(1/δ). The third term has a gap of 1/α factor

to our upper bound, but this term is dominated by other terms under the assumption that

δ = e−O(d). For completeness, we state the lower bound in Appendix B.3. Existing algorithms

are suboptimal since they require either n = Õ((d/α2) + (d(log(1/δ)3)/(αε2))) samples with

(1/ε2) dependence to achieve the error rate of Eq. (3.22) [34] or extra conditions, such as

strictly Gaussian distributions [34, 36] or known covariance matrices [129, 4, 25].

The error bound is near-optimal in its dependence in α under α-corruption. HPTR is the

first estimator that is both (ε, δ)-DP and also achieves the robust error rate of ∥Σ−1/2(µ̂−

µ)∥ = O(α
√

log(1/α)), nearly matching the known information-theoretic lower bound of

∥Σ−1/2(µ̂− µ)∥ = Ω(α) [47]. This lower bound holds for any estimator that is not necessarily

private and regardless of how many samples are available. In comparison, the existing robust

and DP estimator from [160], which runs in polynomial time, requires the knowledge of the

covariance matrix Σ and a larger sample complexity of n = Ω̃((d/α2) + (d3/2 log(1/δ))/(αε)).

If privacy is not required (i.e., ε =∞), a robust mean estimator from [217] achieves the same

error bound and sample complexity as ours.
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3.3.3.2 Hypercontractive distributions

For an integer k ≥ 3, a distribution Pµ,Σ is k-th moment bounded with a mean µ and

covariance Σ if for all ∥v∥ = 1, we have Ex∼PX
[|⟨v, (x− µ)⟩|k] ≤ κk for some κ > 0. However,

similar to the sub-Gaussian case, Mahalanobis distance guarantees require an additional lower

bound on the covariance. To this end, we assume hypercontractivity, which is common in

robust statistics literature, e.g., [143].

Definition 3.3.14. A distribution Pµ,Σ is (κ, k)-hypercontractive if for all v ∈ Rd, Ex∼PX
[|⟨v, (x−

µ)⟩|k] ≤ κk(v⊤Σv)k/2.

Although samples from such heavy-tailed distributions are known to be not resilient, it is

known that they are O(α)-close in total variation distance to an (α,O(α1−1/k), O(α1−2/k))-

resilient dataset. This means that the resulting dataset is ((1/11)α, α,O(α1−1/k), O(α1−2/k))-

corrupt good, for example. Note that hypercontractivity is invariant under affine transforma-

tions, and κ does not depend on the condition number of the covariance.

Lemma 3.3.15 (Resilience of k-th moment bounded samples [217, Lemma G.10]). For

any fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a

(κ, k)-hypercontractive distribution with mean µ and covariance Σ ≻ 0 for some k ≥ 3. For

any c3 > 0, there exist constants c1 and c2 > 0 that depend only on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k

)
,

then S is (c3α, α, c2kκα
1−1/kζ−1/k, c2k

2κ2α1−2/kζ−2/k)-corrupt good with respect to (µ,Σ) with

probability 1− ζ.

This lemma and Theorem 19 imply the following utility guarantee. Further, from Theo-

rem 20, the guarantee also holds under (1/5.5− c3)α-corruption of the i.i.d. samples from a

(κ, k)-hypercontractive distribution. Choosing appropriate constants, we get the following

result.
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Corollary 3.3.16. Under the hypothesis of Lemma 3.3.15, there exists a constant cκ,k,ζ that

depends only on k, κ, and ζ such that for any α ∈ (0, cκ,k,ζ), a dataset of size

n = O
(d+ log(1/(δζ))

εα
+

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k

)
,

sensitivity of ∆ = O(1/(nα1/k)), and threshold of τ = O(α1−1/k) with large enough constants

are sufficient for HPTR(S) with the distance function in Eq. (3.4) to achieve ∥Σ−1/2(µ̂−µ)∥ =

O(kκζ−1/kα1−1/k) with probability 1− ζ. Further, the same guarantee holds even if α-fraction

of the samples is arbitrarily corrupted, as shown in Assumption 3.

This sample complexity is near-optimal in its dependence in d, 1/ε, and 1/α when δ =

e−Θ(d). Suppose ζ, k, and κ are Θ(1). Even for DP mean estimation without robustness, HPTR

is the first algorithm that achieves ∥Σ−1/2(µ̂−µ)∥ = O(α1−1/k) with n = Õ( d
α2(1−1/k)+

d+log(1/δ)
εα

)

samples, which nearly matches the known lower bounds. The first term O(d/α2(1−1/k)) cannot

be improved even if we do not require privacy. The second term O((d+ log(1/δ))/εα) nearly

matches the lower bound of n = Ω(min{d, log((1− e−ε)/δ)}/(εα)) for DP mean estimation

that we show in Proposition 3.3.18. In typical DP scenarios, we have 0 < ε ≤ 1 and

δ = e−Θ(d) [25], in which case the upper and lower bounds match. An existing DP mean

estimator (without robustness) of [135] achieves a stronger (ε, 0)-DP and similar accuracy

but in Euclidean distance with a similar sample size of n = Õ( d
α2(1−1/k) +

d
εα
). However, it

requires a known or identity covariance matrix and a known bound on the unknown mean of

the form µ ∈ [−R,R]d. Such a bounded search space is critical in achieving a stronger pure

privacy guarantee with δ = 0.

The error bound is optimal in its dependence in α under α-corruption. The error bound

∥Σ−1/2(µ̂ − µ)∥ = O(α1−1/k) matches the following information-theoretic lower bound in

Proposition 3.3.17; no algorithm can distinguish two distributions whose means are at least

O(α1−1/k) apart from α-fraction of samples corrupted, even with infinite samples. HPTR is

the first algorithm that guarantees both differential privacy and robustness (i.e., the error

depends only on α and not in d) for k-th moment bounded distributions. If privacy is not
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required (i.e., ε = ∞), a robust mean estimator from [217] achieves a similar error bound

and sample complexity as ours.

Proposition 3.3.17 (Lower bound for robust mean estimation). For any α ∈ (0, 1/2),

there exist two distributions D1 and D2 satisfying the hypotheses of Lemma 3.3.15 such that

dTV(D1,D2) = α, and

∥Σ−1/2(µ1 − µ2)∥ = Ω(α1−1/k) .

Proof. We construct two scalar distributions D1 and D2 with dTV(D1,D2) = α as follows:

D1(x) =

(1− α)/2, if x ∈ {−1, 1}

α if x = −α1/k

, and D2(x) =

(1− α)/2, if x ∈ {−1, 1}

α if x = α1/k

The variance is Ω(1) for both distributions, and |Ex∼D1 [x] − Ex∼D2 [x]| = 2α1−1/k. Then,

it suffices to show that D1 and D2 are both (O(1), k)-hypercontractive. In fact, we know

Ex∼D1 [x] = −α1−1/k, Ex∼D1 [x
2] = Ex∼D2 [x

2] = 1− α + α1−2/k, and ED1 [|x|k] = 2− α. Since

α ∈ (0, 1/2), there exists a constant c such that Ex∼D1 [|x− µ1|k] ≤ c, which concludes the

proof.

Proposition 3.3.18 (Lower bound for DP mean estimation). Let Pµ,Σ,k be the set of (1, k)-

hypercontractive distributions with mean µ ∈ Rd and covariance Σ ∈ Rd×d. Let Mε,δ be a

class of (ε, δ)-DP estimators using n i.i.d. samples from P ∈ Pµ,Σ,k. Then, for ε ∈ (0, 10),

there exists a constant c such that

inf
µ̂∈Mε,δ

sup
µ∈Rd,Σ≻0,P∈Pµ,Σ,k

ES∼Pn [∥Σ−1/2(µ̂(S)− µ)∥2] ≥ cmin

{(
d ∧ log((1− e−ε)/δ)

nε

)2−2/k

, 1

}
.

Proof. We extend the proof of [25, Proposition 4] to hypercontractive distributions. Before

we prove the lower bound, we first establish the private version of the standard statistical

estimation problem. Specifically, let P denote a family of distributions of interest and

θ : P → Θ denote the population parameter. The goal is to estimate θ from i.i.d. samples
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x1, x2, . . . , xn ∼ P. Let θ̂ be an (ε, δ)-differentially private estimator. Furthermore, let

ρ : Θ × Θ → R+ be a (semi)metric on parameter space Θ and ℓ : R+ → R+ be a non-

decreasing loss function with ℓ(0) = 0.

To measure the performance of our (ε, δ)-DP estimator θ̂, we define the minimax risk as

follows:

inf
θ̂
sup
P∈P

Ex1,x2,...,xn∼P

[
ℓ
(
ρ
(
θ̂ (x1, . . . , xn) , θ(P )

))]
. (3.23)

To prove the lower bound of the minimax risk, we construct a well-separated family of

distributions and convert the estimation problem into a testing problem. Specifically, let V

be an index set of finite cardinality. Define PV = {Pv, v ∈ V} ⊂ P to be an indexed family of

distributions. If for all v ̸= v′ ∈ V we have ρ(Pv, Pv′) ≥ 2t, we say PV is 2t-packing of Θ.

The proof of [25, Proposition 4] is based on following lemma.

Lemma 3.3.19 ([25, Theorem 3]). Fix p ∈ [0, 1] and let PV be a 2t-packing of Θ such that

dTV(Pv, Pv′) = p. Let θ̂ be a (ε, δ) differentially private estimator. Then,

1

|V|
∑
ν∈V

Pv

(
ρ
(
θ̂, θ(Pv)

)
≥ t
)
≥

(|V| − 1) ·
(

1
2
e−ε⌈np⌉ − δ 1−e−ε[np⌉

1−e−ε

)
1 + (|V| − 1) · e−ε⌈np⌉ . (3.24)

In our problem, we set P to be P = Pµ,Σ,k. It suffices to construct such an index set V

and indexed family of distributions PV . We construct a packing set similar to that defined

in the proof of [25, Proposition 4]. By [3, Lemma 6], there exists a finite set V ⊂ Rd with

cardinality |V| = 2Ω(d), ∥v∥ = 1 for all v ∈ V, and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V. Define

Q0 as Q0 = N (0, Id×d) and Qv as a point mass on x = α−1/kcv, where v ∈ V. We construct

Pv as Pv = αQv + (1− α)Q0.

We first verify that PV ⊂ P. It is easy to see µ(Pv) = Ex∼Pv [x] = α1−1/kv and Σ(Pv) =

Ex∼Pv [(x − µ(Pv))(x − µ(Pv))
⊤] = (1 − α)Id×d + α(1 − α)α−2/kvv⊤. This implies 1

2
Id×d ⪯

Σ(Pv) ⪯ Id×d. Since E
[
(X − E[X])k

]
≤ E

[
Xk
]

for any X ≥ 0, it suffices to show that

Ex∼Pv [| ⟨u, x⟩ |k] ≤ Ck for some constant C > 0 and any ∥u∥ = 1. In fact, letting ck denote

the k-th moment of standard Gaussian, we have

Ex∼Pv [| ⟨u, x⟩ |k] = (1− α)ck + α
∣∣〈u, α−1/kv

〉∣∣k = O(1) .
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It is also easy to see that dTV(Pv, Pv′) = α. Let ρ(θ1, θ2) = ∥θ1 − θ2∥. We also have

t = min
v ̸=v′∈V

α1−1/k∥v − v′∥ ≥ 1

2
α1−1/k .

Next, we apply the reduction of estimation to testing with this packing V . For (ε, δ)-DP

estimator µ̂, using Lemma 3.3.19, we have

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[∥Σ(Pv)

−1/2(µ̂(S)− µ(Pv))∥2]

= t2
1

|V|
∑
v∈V

Pv

(
∥Σ(Pv)

−1/2(µ̂(S)− θ(Pv))∥ ≥ t
)

≍ t2
1

|V|
∑
v∈V

Pv (∥µ̂(S)− θ(Pv)∥ ≥ t)

≳ t2
ed/2 ·

(
1
2
e−ε⌈nα⌉ − δ

1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2.

The rest of the proof follows from [25, Proposition 4]. We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≳ α2−2/k .

This means, for ε ∈ (0, 1),

inf
µ̂∈Mε,δ

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≳ min

{(
d ∧ log((1− e−ε)/δ)

nε

)2−2/k

, 1

}
,

which completes the proof.

3.3.3.3 Covariance bounded distributions

A distribution Pµ,Σ is covariance bounded with mean µ and covariance Σ if ∥Σ∥ ≤ 1. Contrary

to the previous cases, the sample variance is not resilient since {⟨v, xi−µ⟩2} do not concentrate.
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To get around this issue, we use the Euclidean distance: Dϕ(µ̂, µ) = ∥µ̂− µ∥. This leads to

the surrogate Euclidean distance of

DS(µ̂) = max
∥v∥≤1
⟨v, µ̂⟩ − µv(Mv,α) . (3.25)

Since this does not depend on the robust variance σ2
v(Mv,α), we only require the following

first order resilience.

Lemma 3.3.20 (Resilience of covariance bounded samples [217, Lemma G.3]). For any

fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a covariance

bounded distribution with mean µ and covariance Σ ≻ 0. If n = Ω(d log(d/ζ)/(α)), then with

probability 1− 3ζ, for any subset T ⊂ S of size |T | ≥ (1− α)n, there exists a constant C > 0

such that the following holds for all α ∈ (0, 1/2) and for all v ∈ Rd with ∥v∥ = 1:∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩ − µv

∣∣∣ ≤ Cα1/2 ,

where µv = ⟨v, µ⟩.

This lemma and Theorem 20, adapted for the new DS(µ̂) = max∥v∥≤1⟨v, µ̂⟩ − µv(Mv,α),

imply the following utility guarantee.

Corollary 3.3.21. Under the hypothesis of Lemma 3.3.20, there exists a constant cζ that

only depends on ζ such that for α ∈ (0, cζ), a dataset of size

n = O
(d+ log(1/(δζ))

εα
+
d log(d/ζ)

α

)
,

sensitivity of ∆ = O(1/(n
√
α)), and threshold of τ = O(

√
α) with large enough constants are

sufficient for HPTR(S) with the distance function in Eq. (3.25) to achieve ∥µ̂− µ∥ = O(α1/2)

with probability 1− 3ζ. Further, the same guarantee holds even if a α-fraction of the samples

is arbitrarily corrupted, as shown in Assumption 3.

This sample complexity is near-optimal in its dependence on d, 1/ε, and 1/α for δ = e−O(d).

It matches the information-theoretic lower bound of n = Ω(d/εα) from [135]. For completeness,
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we write the lower bound in Appendix B.3. This problem is easier than the sub-Gaussian

or k-th moment bounded settings, since the error is measured in Euclidean distance and

hence one does not need to adapt to the unknown covariance. Therefore, there exist other

algorithms achieving near-optimality and even runs in polynomial time [135].

The error rate is near-optimal under α-corruption, matching the information-theoretic

lower bound of ∥µ̂− µ∥ = Ω(α1/2) [73]. Note that there exists an DP and robust algorithm

from [160] that achieves near-optimality in both error rate and sample complexity but requires

an additional assumption that the spectral norm of the covariance is known and the unknown

mean is in a bounded set, [−R,R]d, with a known R.

Remark. Corollary 3.3.21 is suboptimal since (1) the error metric is Euclidean ∥µ̂ − µ∥

instead of Mahalanobis ∥Σ−1/2(µ̂− µ)∥, and (2) sample complexity scales as 1/ζ instead of

log(1/ζ). It remains an open problem if these gaps can be closed. For the former, one could

use the Stahel-Donoho outlyingness [184, 74],

DS(µ̂) = sup
v∈Rd,∥v∥=1

|⟨v, µ̂⟩ −Med(⟨v, S⟩)|
Med(|⟨v, S⟩ −Med(⟨v, S⟩)|)

,

in the exponential mechanism, which replaces second moment based normalization by a

first moment based one that is resilient. Here, Med(⟨v, S⟩) is the median of {⟨v, xi⟩}xi∈S.

Further, replacing the median by the median of means can improve the dependence on ζ.

Such directions have been fruitful for robust but non-private mean estimation [58].

3.4 Linear regression

In a standard linear regression, we have i.i.d. samples S = {(xi ∈ Rd, yi ∈ R)}ni=1 from a

distribution Pβ,Σ,γ2 of a linear model:

yi = x⊤i β + ηi ,

where the input xi ∈ Rd has zero mean and covariance Σ and the noise ηi ∈ R has variance

γ2. We further assume E[xiηi] = 0, which is equivalent to assuming that the true parameter

β = Σ−1E[yixi]. In DP linear regression, we want to output a DP estimate β̂ of the unknown
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model parameter β (which corresponds to θ = µ in the general notation), assuming that both

covariance Σ ≻ 0 and noise variance γ2 (corresponding to ϕ = (Σ, γ) in the general notation)

are unknown. The resulting error is measured in DΣ,γ(β̂, β) = (1/γ)∥Σ1/2(β̂ − β)∥, which is

equivalent to the (re-scaled) root excess prediction risk of the estimated predictor β̂. Similar

to Mahalanobis distance for mean estimation, this is challenging since we aim for a tight

guarantee that adapts to the unknown Σ without having enough samples to directly estimate

Σ. We follow the three-step strategy of Section 3.1.2.1 and provide utility guarantees.

3.4.1 Step 1: Designing the surrogate DS(β̂) for the error metric (1/γ)∥Σ1/2(β̂ − β)∥

In the Release step of HPTR, we propose the following surrogate error metric for the

exponential mechanism:

DS(β̂) = max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
xi∈Nv,β̂,α

⟨v, xi(yi − x⊤i β̂)⟩

σv(Mv,α)γ̂
, (3.26)

where γ̂2 is defined as

γ̂2 = min
β̄

1

|Bβ̄,α|
∑

i∈Bβ̄,α

(yi − x⊤i β̄)2 . (3.27)

We define Nv,β̂,α,Mv,α and Bβ̄,α as follows. For a fixed v,Mv,α is defined in Section 3.3.1

as a subset of S with size (1− (4/5.5)α)n that remains after removing (4/5.5)αn data points

corresponding to the top (2/5.5)αn and the bottom (2/5.5)αn of samples when projected

down to Sv = {⟨v, xi⟩}i∈[n]. We denote a robust estimate of the variance in direction v as

σv(Mv,α)
2 = (1/|Mv,α|)

∑
xi∈Mv,α

⟨v, xi⟩2 since xi’s are zero mean. Similarly, for a fixed β̂ and

v, we consider a set of projected data points Sv,β̂ = {⟨v, xi(yi − x⊤i β̂)⟩}i∈[n] and partition S

into three disjoint sets, Bv,β̂,α, Nv,β̂,α, and Tv,β̂,α, where Bv,β̂,α is the subset of S corresponding

to the bottom (2/5.5)αn data points with the smallest values in Sv,β̂, Tv,β̂,α corresponds

to the top (2/5.5)αn data points, and Nv,β̂,α corresponds to the remaining (1− (4/5.5)α)n

middle data points. We use Tv,β̂,α,Nv,β̂,α, and Bv,β̂,α to denote both the set of paired examples

{(xi, yi)} and the set of indices of those examples, and it should be clear from the context

which one we mean.
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For a fixed β̄, Bβ̄,α is defined as a subset of S with size (1− (3.5/5.5)α)n that remains

after removing the largest (2/5.5)αn data points in set Sβ̄ = {(yi − x⊤i β̄)2}i∈[n].

This choice is justified by Lemma 3.4.1, which shows that if we replace the robust one-

dimensional statistics by the true ones, we recover the target error metric. Hence, the

exponential mechanism with distance DS(β̂) is approximately and stochastically minimizing

∥Σ1/2(β̂ − β)∥. For a more elaborate justification of using DS(β̂), we refer to a similar choice

for mean estimation in Section 3.3.1.

Lemma 3.4.1. For any β ∈ Rd, 0 ≺ Σ ∈ Rd×d, and γ > 0, let σ2
v = v⊤Σv. If E[ηixi] = 0,

yi = x⊤i β + ηi and (xi, yi) ∼ Pβ,Σ,γ2, then we have

∥Σ1/2(β̂ − β)∥ = max
v:∥v∥≤1

EPβ,Σ,γ2
[⟨v, xi(yi − x⊤i β̂)⟩]

σv
, and

γ2 = min
β̄∈Rd

E[(yi − x⊤i β̄)2] .

Proof. We have

max
v:∥v∥≤1

EPβ,Σ,γ2
[⟨v, xi(yi − x⊤i β̂)⟩]

σv
= max

v:∥v∥≤1

EPβ,Σ,γ2
[⟨v, xi(x⊤i (β − β̂) + ηi)⟩]

σv

= max
v:∥v∥≤1

⟨v,Σ(β − β̂)⟩
σv

= ∥Σ1/2(β − β̂)∥ ,

where the second equality uses the fact that ηi has zero mean and xi has covariance Σ.

The last equality follows from Lemma B.2.1. For the noise, we have E[(yi − x⊤i β̄)
2] =

E[(x⊤i β + ηi − x⊤i β̄)2] = E[η2i ] + E[(β − β̄)xix⊤i (β − β̄)], which follows from E[ηixi] = 0. This

is minimized when β̄ = β, and the minimum is γ2.

3.4.2 Step 2: Utility analysis under resilience

The following resilience is a fundamental property of the dataset that determines the sensitivity

of DS(β̂). We refer to Section 3.3.2 for a detailed explanation of how resilience relates to

sensitivity.



89

Definition 3.4.2 (Resilience for linear regression). For some α ∈ (0, 1), ρ1 ∈ R+, ρ2 ∈ R+,

and ρ3 ∈ R+, we say a set of n labelled data points Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 is

(α, ρ1, ρ2, ρ3, ρ4)-resilient with respect to (β,Σ, γ) for some β ∈ Rd, positive definite Σ ∈ Rd×d,

and γ > 0 if for any T ⊂ Sgood of size |T | ≥ (1− α)n, the following holds for all v ∈ Rd with

∥v∥ = 1:

∣∣∣ 1|T | ∑
(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i β)
∣∣∣ ≤ ρ1 σv γ , (3.28)

∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩2 − σ2
v

∣∣∣ ≤ ρ2 σ
2
v , (3.29)

∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩
∣∣∣ ≤ ρ3 σv , and (3.30)

∣∣∣ 1|T | ∑
(xi,yi)∈T

(yi − x⊤i β)2 − γ2
∣∣∣ ≤ ρ4 γ

2 , (3.31)

where σ2
v = v⊤Σv.

For example, n i.i.d. samples from sub-Gaussian xi’s and sub-Gaussian ηi’s (independent

of xi’s) is
(
α,O(α log(1/α)), O(α log(1/α)), O(α

√
log(1/α)), O(α log(1/α))

)
-resilient. A re-

silient dataset implies a sensitivity of ∆ = O(ρ1/(αn)) = O(log(1/α)/n), where α is a free

parameter determined by the target accuracy (1/γ)∥Σ1/2(β̂ − β)∥ = O(α log(1/α)). We show

that a sample size of O((d+ log(1/δ))/(εα)) is sufficient to achieve the target accuracy for

any resilient dataset. In Section 3.4.3, we apply this theorem to resilient datasets from several

sampling distributions of interest and characterize the trade-offs.

Theorem 21 (Utility guarantee for linear regression). There exist positive constants c and C

such that for any (α, ρ1, ρ2, ρ3, ρ4)-resilient set S with respect to (β,Σ ≻ 0, γ > 0) satisfying

α ∈ (0, c),ρ1 < c, ρ2 < c, ρ23 ≤ cα and ρ4 < c, HPTR with the distance function in Eq. (3.26),

∆ = 110ρ1/(αn), and τ = 42ρ1 achieves (1/γ)∥Σ1/2(β̂ − β)∥ ≤ 32ρ1 with probability 1− ζ if

n ≥ C
d+ log(1/(δζ))

εα
. (3.32)
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3.4.2.1 Robustness of HPTR

One by-product of using robust statistics in DS(β̂) is that robustness for HPTR comes for

free under a standard data corruption model.

Assumption 4 (αcorrupt-corruption). Given a set Sgood = {(x̃i ∈ Rd, ỹi ∈ R)}ni=1 of n data

points, an adversary inspects all data points, selects αcorruptn of the data points, and replaces

them with arbitrary dataset Sbad of size αcorruptn. The resulting corrupted dataset is called

S = {(xi ∈ Rd, yi ∈ R)}ni=1.

The same guarantee as Theorem 21 holds under corruption up to a corruption of αcorrupt <

(1/5.5)α fraction of a (α, ρ1, ρ2, ρ3, ρ4)-resilient dataset Sgood. The factor (1/5.5) is due to

the fact that the algorithm can remove (4/5.5)α fraction of the good points and a slack of

(0.5/5.5)α fraction is needed to resilience of neighboring datasets.

Definition 3.4.3 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2, ρ3, ρ4)-corrupt

good with respect to (β,Σ, γ) if it is an αcorrupt-corruption of an (α, ρ1, ρ2, ρ3, ρ4)-resilient

dataset Sgood.

Theorem 22 (Robustness). There exist positive constants c and C such that for any

((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ ≻ 0, γ > 0) satisfying

α < c, ρ1 < c, ρ2 < c, ρ23 ≤ cα and ρ4 < c, HPTR with the distance function in Eq. (3.26),

∆ = 110ρ1/(αn), and τ = 42ρ1 achieves (1/γ)∥Σ1/2(β̂ − β)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
. (3.33)

We provide a proof in Sections 3.4.2.2-3.4.2.6. When there is no adversarial corruption,

Theorem 21 immediately follows by selecting α as a free parameter.

3.4.2.2 Proof strategy for Theorem 22

The overall proof strategy follows that of Section 3.3.2.2 for mean estimation. We highlight

the differences here.
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Lemma 3.4.4 (Lemma 10 from [186]). For a (α, ρ1, ρ2, ρ3, ρ4)-resilient set S with respect to

(β,Σ, γ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of size at least α̃n and

for any unit vector v ∈ Rd:∣∣∣ 1|T | ∑
(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i β)
∣∣∣ ≤ 2− α̃

α̃
ρ1 σv γ , (3.34)∣∣∣∣∣ 1|T |∑

xi∈T

⟨v, xi⟩2 − σ2
v

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ2σ
2
v , (3.35)∣∣∣∣∣ 1|T |∑

xi∈T

⟨v, xi⟩

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ3σv , and (3.36)

∣∣∣ 1|T | ∑
(xi,yi)∈T

(yi − x⊤i β)2 − γ2
∣∣∣ ≤ 2− α̃

α̃
ρ4 γ

2 . (3.37)

This technical lemma is critical in showing that the sensitivity of one-dimensional statistics

is bounded by the resilience of the dataset, such that the sensitivity of DS(β̂) for a resilient

S is bounded by

|DS(β̂)−DS′(β̂)| ≤ C ′
(
1 +

ρ23
α

)ρ1 + (1/γ)∥Σ1/2(β̂ − β)∥
αn

for some constant C ′ and for any neighboring dataset S ′, as shown in Eq (3.47). The desired

sensitivity bound is local in two ways: it requires S to be resilient and (1/γ)∥Σ1/2(β̂ − β)∥ =

O(ρ1). Under the assumption that ρ23/α = O(1) with a small enough constant, this achieves

the desired bound ∆ = O(ρ1/(αn)) with β̂ ∈ Bτ,S and τ = O(ρ1). The standard utility

analysis of exponential mechanisms shows that the error of (1/γ)∥Σ1/2(β̂ − β)∥ = O(ρ1) can

be achieved when eO(d)−c ε
∆
ρ1 ≤ ζ, which happens if n = Ω((d+ log(1/ζ))/(εα)) with a large

enough constant. The Test step checks the two localities by ensuring that DP conditions

are met for the given dataset.

Outline. Analogous to the mean estimation proof, the analyses of utility and the safety

test build upon the universal analysis of HPTR in Theorem 28. For linear regression, we

show in Sections 3.4.2.3-3.4.2.5 that the assumptions of Theorem 28 are met for a resilient

dataset and the choices of constants and parameters: ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1,
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∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), and a large enough constant c2. We

assume that α < c and ρ1 < c for a small enough constant c. A proof of Theorem 22 is shown

in Section 3.4.2.6, and Theorem 21 immediately follows by selecting α as a free parameter.

The above resilience properties also imply the following useful resilience on the Sβ̄ =

{(yi − β̄⊤xi)
2}i=[n] for any vector β̄.

Lemma 3.4.5 (Resilience of residual square). Let Sgood = {(xi ∈ Rd, yi ∈ R)}i=[n] be

(α, ρ1, ρ2, ρ3, ρ4)-resilient with respect to (β,Σ, γ). Let ρ∗ = max{ρ1, ρ2, ρ4}. Then, we have

1. for any T ∈ Sgood of size |T | ≥ (1− α)n and any vector β̄ ∈ Rd,∣∣∣∣∣∣ 1|T |
∑

(xi,yi)∈T

(yi − β̄⊤xi)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣ ≤ ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 , (3.38)

2. and for any 0 ≤ α̃ ≤ α and T ∈ Sgood of size |T | ≥ α̃n, we have∣∣∣∣∣∣ 1|T |
∑

(xi,yi)∈T

(yi − β̄⊤xi)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣ ≤ 2− α̃
α̃

ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 .(3.39)

Proof. The proof follows directly from resilience properties of Eq. (3.28), (3.29) and (3.31).

3.4.2.3 Resilience implies robustness

To show that the assumption (d) in Theorem 28 is satisfied, we use the robustness of one-

dimensional variance σv(Mv,α) (Lemma 3.4.6) and show that DS(β̂) is a good approximation

of (1/γ)∥Σ1/2(β̂ − β)∥ (Lemma 3.4.8).

Lemma 3.4.6. For an ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ)

and any unit norm vector v ∈ Rd, we have 0.9σv ≤ σv(Mv,α) ≤ 1.1σv.

Proof. This follows from Lemma 3.3.5.

Lemma 3.4.7. For a ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ)

and any unit norm vector v ∈ Rd, we have 0.99γ ≤ γ̂ ≤ 1.01γ.
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Proof. Analogous to the proof of Lemma 3.4.4, for any fixed β̄, we have∣∣∣∣∣∣ 1

|Bβ̄,α|
∑

i∈Bβ̄,α

(yi − x⊤i β̄)2 − (γ + ∥Σ1/2(β − β̄)∥)2
∣∣∣∣∣∣

≤
|
∑

Bβ̄,α∩Sgood
(yi − x⊤i β̄)2 − (γ + ∥Σ1/2(β − β̄)∥)2|

(1− (2/5.5)α)n

+
|
∑

Bβ̄,α∩Sbad
(yi − x⊤i β̄)2 − (γ + ∥Σ1/2(β − β̄)∥)2|

(1− (2/5.5)α)n
(a)

≤ (1− (2/5.5)α)nρ∗(γ + ∥Σ1/2(β − β̄)∥)2

(1− (2/5.5)α)n
+

(2/11)αn · 2ρ∗(γ + ∥Σ1/2(β − β̄)∥)2/((2/11)α)
(1− (2/5.5)α)n

(b)

≤ 4ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 , (3.40)

where (a) follows from Lemma 3.4.5, and (b) follows from our assumption that α ≤ c for

some small enough constant c.

Let F (β̄) = 1
|Bβ̄,α|

∑
i∈Bβ̄,α

(yi − x⊤i β̄)
2. We know that γ̂2 = minβ̄ F (β̄) ≤ F (β), which,

together with Eq. (3.40), implies

γ̂2 ≤ (1 + 4ρ∗)γ2 ≤ 1.0201γ2 ,

when ρ∗ ≤ c for some c small enough.

Also, we have

γ̂2 ≥ (1− 4ρ∗)(γ + ∥Σ1/2(β − β̄)∥)2 ≥ (1− 4ρ∗)γ2 ≥ 0.9801γ2.

when ρ∗ ≤ c for some c small enough.

Lemma 3.4.8. For a ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ),

if β̂ ∈ Bτ,S and τ = 42ρ1, then
∣∣ ∥Σ1/2(β̂ − β)∥/γ −DS(β̂)

∣∣ ≤ 0.15τ + 1.1ρ1 ≤ 10.2ρ1.

Proof. By Lemma 3.4.1, Lemma B.2.2 and resilience Eq. (3.28) and Eq. (3.29), we have
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∣∣∣∣∣∣ max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

⟨v, xi(yi − x⊤i β̂)⟩

σv
−
∥∥∥Σ1/2(β − β̂)

∥∥∥
∣∣∣∣∣∣

=

∣∣∣∣∣∣ max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

(
v⊤xix

⊤
i (β − β̂) + v⊤xiηi

)
σv

− max
v:∥v∥≤1

v⊤Σ(β − β̂)
σv

∣∣∣∣∣∣
≤ max

v:∥v∥≤1

∣∣∣∣∣∣
v⊤
(

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

xix
⊤
i − Σ

)
(β − β̂)

σv
+
v⊤ 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α
xiηi

σv

∣∣∣∣∣∣
≤

∥∥∥∥∥∥Σ−1/2

 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α

xix
⊤
i − Σ

 (β − β̂)

∥∥∥∥∥∥+
∥∥∥∥∥∥Σ−1/2 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α

xiηi

∥∥∥∥∥∥
≤ ρ2∥Σ1/2(β − β̂)∥+ ρ1γ .

Together with Lemma 3.4.6, this implies

0.9DS(β̂)γ̂ − ρ1γ
1 + ρ2

≤
∥∥∥Σ1/2(β − β̂)

∥∥∥ ≤ 1.1DS(β̂)γ̂ + ρ1γ

1− ρ2
.

Assuming ρ2 ≤ 0.013, we have 0.86DS(β̂)−1.1ρ1 ≤
∥∥∥Σ1/2(β − β̂)

∥∥∥ /γ ≤ 1.15DS(β̂)+1.1ρ1.

Since DS(β̂) ≤ τ , we get the desired bound.

3.4.2.4 Bounded volume

We show that the assumption (a) in Theorem 28 is satisfied for robust estimate DS(β̂).

Lemma 3.4.9. For ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and

c2 ≥ log(67/12) + log((c0 + 2c1)/c1), we have (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2d , and

Vol({β̂ : ∥Σ1/2(β̂ − β)∥/γ ≤ (c0 + 2c1)ρ})
Vol({β̂ : ∥Σ1/2(β̂ − β)∥/γ ≤ c1ρ})

≤ ec2d .
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Proof. The proof is similar to the proof of Lemma 3.3.7. The second part of assumption (a)

follows from the fact that

Vol({β̂ : ∥Σ1/2(β̂ − β)∥ ≤ r}) = cd|Σ|rd ,

for some constant cd that depends only on the dimension and selecting c2 ≥ log((c0+2c1)/c1).

The first part follows from our choices of c0, c1, τ , ∆ and the following corollary.

Corollary 3.4.10 (Corollary of Lemma 3.4.8). If β̂ ∈ B2τ,S and τ = 42ρ1, then
∣∣ ∥Σ1/2(β̂ −

β)∥/γ −DS(β̂)
∣∣ ≤ 14.2ρ1.

3.4.2.5 Resilience implies bounded local sensitivity

We show that resilience implies the assumption (b) in Theorem 28 (Lemma 3.4.14). Assuming

(k∗+1)/n ≤ α/2, we show a set S ′ with at most k∗ data points arbitrarily changed from S has

bounded local sensitivity. This implies that S ′ is a ((1/5.5)α+(k∗/n), α, ρ1, ρ2, ρ3, ρ4)-corrupt

good set with respect to (β,Σ, γ).

Lemma 3.4.11. For an ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S ′ with respect to

(β,Σ, γ), α̃ ≤ (1/11)α, and any unit norm v ∈ Rd, we have 0.9σv ≤ σv(Mv,α) ≤ 1.1σv.

Proof. This follows from Lemma 3.3.9.

Lemma 3.4.12. For a ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S ′ with respect to

(β,Σ, γ), and any unit norm vector v ∈ Rd, we have 0.99γ ≤ γ̂ ≤ 1.01γ.

Proof. This proof follows from the proof of Lemma 3.4.7.

Lemma 3.4.13. For a ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S ′ with respect to

(β,Σ, γ) and α̃ ≤ (1/11)α, if β̂ ∈ Bt,S′ then we have ∥Σ1/2(β̂ − β)∥/γ ≤ 1.1ρ1 + 1.15t and∣∣DS′(β̂)− ∥Σ1/2(β̂ − β)∥/γ
∣∣ ≤ 1.1ρ1 + 0.15t.

Proof. This proof follows from the proof of Lemma 3.4.8.



96

Lemma 3.4.14. For ∆ = 110ρ1/(αn), τ = 42ρ1, and an ((1/5.5)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt

good S, if

n = Ω
( log(1/(δζ))

αε

)
with a large enough constant, then the local sensitivity in assumption (b) is satisfied.

Proof. We follow the proof strategy of Lemma 3.3.11 in Section 3.3.2.5. Consider a dataset

S ′ that is at Hamming distance at most (1/11)αn from S and corresponding partition

(T ′
v,β̂,α,N ′

v,β̂,α,B′
v,β̂,α) of S ′ for a specific direction v. By the resilience property of the tails

in Eq. (3.34) and Eq. (3.35), Lemma B.2.1, and Lemma B.2.2, we have for any v ∈ Rd with

unit norm ∥v∥ = 1 and any β̂ ∈ Rd,

v⊤ 1
|T ′

v,β̂,α
∩Sgood|

∑
i∈T ′

v,β̂,α
∩Sgood

((
xix

⊤
i − Σ

)
(β − β̂) + xiηi

)
σv

≤

∥∥∥∥∥∥∥Σ−1/2

 1

|T ′
v,β̂,α
∩ Sgood|

∑
i∈T ′

v,β̂,α
∩Sgood

(
xix

⊤
i − Σ

)
(β − β̂)


∥∥∥∥∥∥∥+ (3.41)

∥∥∥∥∥∥∥Σ−1/2

 1

|T ′
v,β̂,α
∩ Sgood|

∑
i∈T ′

v,β̂,α
∩Sgood

xiηi


∥∥∥∥∥∥∥

≤ 2ρ2
(1/11)α

∥Σ1/2(β − β̂)∥+ 2ρ1
(1/11)α

γ , (3.42)

where Sgood is the original uncorrupted resilient dataset. Similarly, we have

v⊤ 1
|B′

v,β̂,α
∩Sgood|

∑
i∈B′

v,β̂,α
∩Sgood

((
xix

⊤
i − Σ

)
(β − β̂) + xiηi

)
σv

≤ 2ρ2
(1/11)α

∥Σ1/2(β − β̂)∥+ 2ρ1
(1/11)α

γ .

This implies

min
i∈T ′

v,β̂,α
∩Sgood

v⊤
(
xix

⊤
i (β − β̂) + xiηi

)
σv

− max
i∈B′

v,β̂,α
∩Sgood

ṽ⊤
(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ 44ρ1
α

γ +
44ρ2
α
∥Σ1/2(β − β̂)∥ . (3.43)
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Analogous to Lemma 3.3.11, for a neighboring databases S ′ and S ′′, the corresponding

middle sets N ′
v,β̂,α and N ′′

v,β̂,α differ by at most one entry. Denote those entries by x′i and

η′i = y′i − ⟨β, x′i⟩ in N ′
v,β̂,α and x′′j and η′′j in N ′′

v,β̂,α
. Then, from Eq. (3.43), we have

∣∣∣v⊤ ((x′ix′⊤i − x′′jx′′⊤j ) (β − β̂) + x′iη
′
i − x′′jη′′j

)∣∣∣ ≤ (44ρ1
α

γ +
44ρ2
α
∥Σ1/2(β − β̂)∥

)
σv ,

which implies that

∣∣∣∣∣∣∣v⊤
1

(1− (4/5.5)α)n

∑
i∈N ′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
− v⊤ 1

(1− (4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)∣∣∣∣∣∣∣
≤ σv

(1− (4/5.5)α)n

(
44ρ1
α

γ +
44ρ2
α
∥Σ1/2(β − β̂)∥

)
. (3.44)

By the resilience properties in Eq. (3.28) and Eq. (3.29), and Lemma B.2.2, Lemma 3.4.1,

and the fact that N ′′
v,β̂,α
∩ Sgood is at least of size (1 − α)n, we have for the data points in

N ′′
v,β̂,α
∩ Sgood,

v⊤ 1
|N ′′

v,β̂,α
∩Sgood|

∑
i∈N ′′

v,β̂,α
∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ (1 + ρ2)∥Σ1/2(β̂ − β)∥+ ρ1γ .

By Eq. (3.42), for any x′′i ∈ N ′′
v,β̂,α
∩ Sbad (where Sbad = S ′′ \ Sgood), we have

v⊤
(
x′′i x

′′⊤
i (β − β̂) + x′′i η

′′
i

)
σv

≤
v⊤ 1

|T ′′
v,β̂,α

∩Sgood|
∑

i∈T ′′
v,β̂,α

∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤
(22ρ2

α
+ 1
)
∥Σ1/2(β̂ − β)∥+ 22ρ1

α
γ .
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Since |Sbad| ≤ (1.5/5.5)αn and α < c for some small enough constant c, we have

v⊤ 1
(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σv

=
v⊤ 1

(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α
∩Sbad

(
xix

⊤
i (β − β̂) + xiηi

)
σv

+

v⊤ 1
(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α
∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ (6ρ2 + (1.5/5.5)α)∥Σ1/2(β̂ − β)∥+ 6ρ1γ

1− (4/5.5)α
+
(
(1 + ρ2)∥Σ1/2(β̂ − β)∥+ ρ1γ

)
≤ 7ρ1γ + (1 + α + 7ρ2)∥Σ1/2(β̂ − β)∥ . (3.45)

Analogous to Eq. (3.19), by using the resilience properties in Eqs. (3.29) and (3.30), we

have

|σ′2
v − σ′′2

v | =
1

(1− (4/5.5)α)n

∣∣∣∣∣∣∣
∑

xi∈N ′
v,β̂,α

⟨v, xi⟩2 −
∑

xi∈N ′′
v,β̂,α

⟨v, xi⟩2

∣∣∣∣∣∣∣
≤ 64 · 112 · ρ23σ2

v

α2(1− (4/5.5)α)n
. (3.46)
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By Eqs. (3.45), (3.44), and (3.46), we have∣∣∣DS′(β̂)−DS′′(β̂)
∣∣∣

≤ max
v:∥v∥=1

∣∣∣∣∣∣∣
v⊤ 1

|N ′
v,β̂,α

|
∑

i∈N ′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σ′
vγ̂

′ −
v⊤ 1

|N ′′
v,β̂,α

|
∑

i∈N ′′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σ′′
v γ̂

′′

∣∣∣∣∣∣∣
≤ max

v:∥v∥=1

∣∣∣∣∣∣∣∣
v⊤
(

1
(1−(4/5.5)α)n

∑
i∈N ′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
− 1

(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

))
σ′
vγ̂

′

∣∣∣∣∣∣∣∣
+ max

v:∥v∥=1

v⊤ 1
|N ′′

v,β̂,α
|
∑

xi∈N ′′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σv

∣∣∣∣ σvσ′
vγ̂

′ −
σv
σ′′
v γ̂

′′

∣∣∣∣
≤ 44ρ1

0.9 · 0.99(1− (4/5.5)α)nα
+

44ρ2
0.9 · 0.99(1− (4/5.5)α)nα

∥Σ1/2(β − β̂)∥
γ

+
64 · 112 · ρ23 · 0.02γ

0.93α2(1− (4/5.5)α)n · 0.992γ2
(
7ρ1γ + (1 + α + 7ρ2)∥Σ1/2(β̂ − β)∥

)
(3.47)

≤
(
0.12

αn
+

0.016

αn

)
∥Σ1/2(β̂ − β)∥

γ
+

(
9ρ1
αn

+
0.07ρ1
αn

)
≤ 0.2

αn

∥Σ1/2(β̂ − β)∥
γ

+
50ρ1
αn

where the last three inequalities follow from our assumptions that α ≤ c and ρ2 ≤ c, ρ23 ≤ cα,

ρ4 ≤ c with a small enough constant c and Lemma 3.4.12. From Lemma 3.4.13, we know

that if β̂ ∈ Bτ+(k∗+3)∆,S, we have ∥Σ1/2(β̂ − β)∥/γ ≤ 1.1ρ1 + 1.15(τ + (k∗ + 3)∆). We show

that ∥Σ1/2(β̂ − β)∥ ≤ 50ρ1γ for the choices of ∆, k∗, τ and n:

1.1ρ1 + 1.15(τ + (k∗ + 3)∆) ≤ 49ρ1 +
50ρ1 log(1/(δζ))

εαn

≤ 50ρ1 ,

where ∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), ε ≤ log(4/δζ) and n ≥ C ′ log(1/(δζ))/(ε α)

for some large enough universal constant C ′ > 0. This implies that

|DS′(β̂)−DS′′(β̂)| ≤ 110ρ1
αn

= ∆ .
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3.4.2.6 Proof of Theorem 22

We show that the sufficient conditions of Theorem 28 are met for the following choices of

constants and parameters: p = d, ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, and ∆ = 110ρ1/(αn).

We set c2 to be a large constant and change only the constant factor in the sample complexity.

The assumptions (a), (b), and (d) follow from Lemmas 3.4.9, 3.4.14, and 3.4.8, respectively.

The assumption (c) follows from

∆ =
110ρ1
αn

≤ 1.2ρ1ε

32(c2d+ (ε/2) + log(16/(δζ)))
=

(c0 − 3c1)ρε

32(c2p+ (ε/2) + log(16/(δζ)))

for a large enough n ≥ C ′(d+ log(1/(δζ)))/(αε). This finishes the proof of Theorem 22, from

which Theorem 21 follows immediately.

3.4.3 Step 3: Achievability guarantees

We provide utility guarantees for popular families of distributions studied in the private or

robust linear regression literature: sub-Gaussian [70, 93, 217, 40, 206] and hypercontractive

[217, 143, 51, 120, 22, 174]. Similar to mean estimation, the resilience we need scales with

the variance. For sub-Gaussian distributions, this requires a lower bound on the variance of

the form σ ⪯ cΓ for the sub-Gaussian proxy Γ. For the k-th moment bounded distributions,

we require hypercontractivity.

3.4.3.1 Sub-Gaussian distributions

The most common scenario in linear regression is when both input xi and noise ηi are sub-

Gaussian (as defined in Eq. (3.21)) and independent of each other. The next lemma shows

that the resulting dataset is (O(α log(1/α)), O(α log(1/α)), O(α
√
log(1/α)), O(α log(1/α)))-

resilient, which follows from the covariance resilience of sub-Gaussian distributions.

Lemma 3.4.15 (Resilience for sub-Gaussian samples). Let D1 be a distribution of xi ∈ Rd,

which is zero mean sub-Gaussian with covariance Σ and sub-Gaussian proxy 0 ≺ Γ ⪯ cΣ for

some constant c. Let D2 be a distribution of ηi ∈ R, which is a zero mean one-dimensional
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sub-Gaussian with variance γ2 and sub-Gaussian proxy γ20 ≤ cγ2 for some constant c. A

multiset of i.i.d. labeled samples S = {(xi, yi)}ni=1 is generated from a linear model with

noise ηi independent of xi: yi = x⊤i β + ηi , where the input xi and the independent noise

ηi are i.i.d. samples from D1 and D2. There exist constants c1 and c2 > 0 such that, for

any α ∈ (0, 1/2), if n ≥ c1((d+ log(1/ζ))/(α log(1/α))2), then, with probability 1− ζ, S is

(α, c2α log(1/α), c2α log(1/α), c2α
√

log(1/α), c2α log(1/α))-resilient with respect to (β,Σ, γ).

Proof. This follows from [121, Corollary 4]. Let x̃i :=

 Σ−1/2xi

ηi/γ

 ∈ Rd+1. By definition,

we know that x̃i can be seen as samples from a zero mean sub-Gaussian distribution with

covariance I(d+1)×(d+1). By [121, Corollary 4] and a union bound, we know that if n =

Ω(d + log(1/ζ))/(α log(1/α))2, then there exists a constant C1 such that with probability

1− ζ, for any T ⊂ S and |T | ≥ (1− α)n and any unit vector u ∈ Rd+1, v ∈ Rd, we have∣∣∣∣∣u⊤
(

1

|T |
∑
xi∈T

x̃ix̃
⊤
i − I(d+1)×(d+1)

)
u

∣∣∣∣∣ ≤ C1α log(1/α) , (3.48)∣∣∣∣∣v⊤
(

1

|T |
∑
xi∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d

)
v

∣∣∣∣∣ ≤ C1α log(1/α) , and (3.49)∣∣∣∣∣ 1|T |∑
ηi∈T

η2i
γ2
− 1

∣∣∣∣∣ ≤ C1α log(1/α) . (3.50)

Let u :=

 u1

u2

, where u1 ∈ Rd and u2 ∈ R and ∥u1∥2 + u22 = 1. Then, Eq. (3.48) is

equivalent to∣∣∣∣∣u⊤1
(

1

|T |
∑
i∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d

)
u1 +

2u2
γ
u⊤1

1

|T |
∑
i∈T

Σ−1/2xiηi +
u22
γ2

1

|T |
∑
i∈T

(η2i − γ2)

∣∣∣∣∣
≤ C1α log(1/α) . (3.51)

By Eq. (3.49) and (3.50), we know∣∣∣∣∣u⊤1 ( 1

|T |
∑
i∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d)u1

∣∣∣∣∣ ≤ C1α log(1/α)∥u1∥2∣∣∣∣∣u22γ2 1

|T |
∑
i∈T

(η2i − γ2)

∣∣∣∣∣ ≤ C1α log(1/α)u22 .
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This means that

−C1α log(1/α)(1 + ∥u1∥2 + u22) ≤
2u2
γ
u⊤1

1

|T |
∑
i∈T

Σ−1/2xiηi ≤ C1α log(1/α)(1 + ∥u1∥2 + u22) .(3.52)

For any unit vector w ∈ Rd, let u1 = 0.5w. Thus, we have u22 = 0.75. Eq. (3.52) implies∣∣∣∣∣1γw⊤ 1

|T |
∑
i∈T

Σ−1/2xiηi

∣∣∣∣∣ ≤ C2α log(1/α) (3.53)

for some constant C2. This proves the first resilience property in Eq. (3.28). The second, third

and fourth resilience properties in Eqs. (3.29), (3.30) and (3.31) follow from [73, Lemma 4.1],

[121, Corollary 4] and a union bound.

The preceding resilience lemma and Theorem 22 imply the following optimal utility

guarantee.

Corollary 3.4.16. Under the hypothesis of Lemma 3.4.15, there exists a constant c > 0 such

that for any α ∈ (0, c), a sample size of

n = O
( d+ log(1/ζ)

(α log(1/α))2
+
d+ log(1/(δζ))

αε

)
,

a sensitivity of ∆ = O(log(1/α)/n), and a threshold of τ = O(α log(1/α)) with large enough

constants are sufficient for HPTR(S) with the distance function in Eq. (3.26) to achieve

1

γ
∥Σ1/2(β̂ − β)∥ = O(α log(1/α)) (3.54)

with probability 1− ζ. Further, the same guarantee holds even if α-fraction of the samples is

arbitrarily corrupted, as in Assumption 4.

The sample complexity is nearly optimal. Even for DP linear regression without robustness,

HPTR is the first algorithm for sub-Gaussian distributions with an unknown covariance Σ

that up to log factors matches the lower bound of n = Ω̃(d/α2 + d/(αε)) assuming ε < 1

and δ < n−1−ω for some ω > 0 from [40, Theorem 4.1]. For completeness, we provide the
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lower bound in Appendix B.3. An existing algorithm for DP linear regression from [40]

is suboptimal since it require Σ to be close to the identity matrix, which is equivalent to

assuming that we know Σ.

The error bound is nearly optimal under α-corruption, i.e., HPTR is the first robust

estimator that is both differentially private and also achieves the near-optimal error rate of

(1/γ)∥Σ1/2(β̂ − β)∥ = O(α log(1/α)), matching the known information-theoretic lower bound

of (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(α) [93] up to a log factor. This lower bound holds for any robust

estimator that is not necessarily private and regardless of how many samples are available. If

privacy is not required (i.e., ε = ∞), a similar guarantee can be achieved by, for example,

[70].

3.4.3.2 Hypercontractive distributions with independent noise

We assume that xi and ηi are independent and (κ, k)-hypercontractive and (κ̃, k)-hypercontractive,

respectively, as in Definition 3.3.14. For the necessity of hypercontractive conditions for

robust linear regression, we refer to [217, Section F.5]. The next lemma shows that the resulting

dataset has a subset of size at least (1−α)n that is (O(α), O(α1−1/k), O(α1−2/k), O(α1−1/k), O(α1−2/k))-

resilient.

Lemma 3.4.17 (Resilience for hypercontractive samples). For some integer k ≥ 4 and

positive scalar parameters κ and κ̃, let D1 be a (κ, k)-hypercontractive distribution on xi ∈ Rd

with zero mean and covariance Σ ≻ 0. Let D2 be a (κ̃, k)-hypercontractive distribution on

ηi ∈ R with zero mean and variance γ2. A multiset of labeled samples S = {(xi, yi)}ni=1 is

generated from the linear model yi = x⊤i β + ηi, where the input xi and the independent noise

ηi are i.i.d. samples from D1 and D2. For any α ∈ (0, 1/2) and any constant c3 > 0, there

exist constants c1 and c2 > 0 that depend only on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2
+
κ2(1 + κ̃2)d log d

α2/k

)
, (3.55)

then S is (c3α, α, c2kκκ̃α
1−1/kζ−1/k, c2k

2κ2α1−2/kζ−2/k, c2kκα
1−1/kζ−1/k, c2k

2κ̃2α1−2/kζ−2/k)-

corrupt good with respect to (β,Σ, γ) with probability 1− ζ.
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Proof. Since xi and ηi are independent, we know

E
[∣∣〈v, γ−1Σ−1/2xη

〉∣∣k] = E
[∣∣〈v,Σ−1/2x

〉∣∣k]E [|γ−1η|k
]
≤ κkκ̃k .

This implies that γ−1Σ−1/2xη is a k-th moment bounded distribution with covariance Id×d.

By Lemma 3.3.15, under the sample complexity of (3.55), with probability 1 − 8ζ, there

exists a subset Sgood ⊂ S such that |Sgood| ≥ (1− α)n, and there exists a constant C such

that for any subset T ⊂ Sgood and |T | ≥ (1− 10α)|Sgood|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

1

γ
Σ−1/2xiηi

∥∥∥∥∥ ≤ Ckκκ̃γα1−1/kζ−1/k . (3.56)

This proves the first resilience property in Eq. (3.28). The second resilience property

in Eq. (3.29), the third in Eq. (3.30) and the fourth in Eq. (3.31) follow directly from

Lemma 3.3.15.

The preceding resilience lemma and Theorem 22 imply the following utility guarantee.

HPTR is naturally robust against (1/5.5− c3)α-corruption of the data. Choosing appropriate

constants, we get the following result.

Corollary 3.4.18. Under the hypothesis of Lemma 3.4.17, there exists a constant c > 0 such

that for any α ≤ c and k2κ2α1−2/k ≤ c, it is sufficient to have a dataset of size

n = O
( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2
+
κ2(1 + κ̃2)d log d

α2/k
+
d+ log(1/δ)

αε

)
,(3.57)

a sensitivity of ∆ = O(1/(nα1/k)), and a threshold of τ = O(α1−1/k) with large enough

constants for HPTR(S) with the distance function in Eq. (3.26) to achieve (1/γ)∥Σ1/2(β̂ −

β)∥ = O(kκκ̃α1−1/kζ−1/k) with probability 1− ζ. Further, the same guarantee holds even if

α-fraction of the samples is arbitrarily corrupted, as in Assumption 4.

The error bound is optimal under α-corruption; namely, the error bound (1/γ)∥Σ1/2(β̂ −

β)∥ = O(α1−1/k) matches the lower bound (1/γ)∥Σ1/2(β̂−β)∥ = Ω(α1−1/k) by [22], where the

noise ηi is (1, k)-hypercontractive and independent of xi, which is also (1, k)-hypercontractive.
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For completeness, we provide the lower bound in Appendix B.3. HPTR is the first algorithm

that guarantees both differential privacy and an optimal robust error bound of O(α1−1/k) for

hypercontractive distributions. If only robust error bound under α-corruption is at issue,

[217] also achieves the same optimal error bound but does not provide differential privacy.

Further, in this robust but not private case with ε = ∞, our sample complexity improves

by a factor of α2/k upon the state-of-the-art sample complexity of [217, Theorem 3.3], which

shows that n = O(d/α2) is sufficient to achieve (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k).

Remark. Suppose k, κ, κ̃, and ζ are Θ(1). HPTR achieves (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k)

with n = Õ(d/(α2−2/k) + (d+ log(1/δ))/(αε)) samples, where Õ hides logarithmic factors in

d. The first term cannot be improved upon since it matches the first term of a lower bound

of n = Ω̃(d/α2−2/k + d/(α1−1/kε)) from [40, Theorem 4.1], which holds even for a standard,

non-robust sub-Gaussian (which is (ck, k)-hypercontractive for any k ∈ Z+ and a constant ck

that depends only on k) linear regression with independent noise (see Appendix B.3 for a

precise statement). However, we do not have a matching lower bound for the second term. To

the best of our knowledge, HPTR is the first algorithm for linear regression that guarantees

(ε, δ)-DP under hypercontractive distributions with independent noise.

3.4.3.3 Hypercontractive distributions with dependent noise

We assume xi and ηi may be dependent and marginally (κ, k)-hypercontractive and (κ̃, k)-

hypercontractive, respectively, as defined in Definition 3.3.14. In this case, the first resilience ρ1

that determines the error rate increases from O(α1−1/k) to O(α1−2/k) as a result of the potential

correlation between input and noise. The next lemma shows that the the resulting dataset has

a subset of size at least (1− α)n that is (O(α), O(α1−2/k), O(α1−2/k), O(α1−1/k), O(α1−2/k))-

resilient.

Lemma 3.4.19 (Resilience for hypercontractive samples with dependent noise). For some

integer k ≥ 4 and positive scalar parameters κ and κ̃, let D1 be a (κ, k)-hypercontractive distri-

bution on xi ∈ Rd with zero mean and covariance Σ ≻ 0. Let D2 be a (κ̃, k)-hypercontractive
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distribution on ηi ∈ R with variance γ2. A multiset of labeled samples S = {(xi, yi)}ni=1 is

generated from a linear model as follows: yi = x⊤i β+ ηi, where {(xi, ηi)}i∈[n] are i.i.d. samples

from some distribution D whose marginal distribution for xi is D1, the marginal distribution

for ηi is D2, and E[xiηi] = 0. For any α ∈ (0, 1/2) and c3 > 0, there exist constants c1 and

c2 > 0 that depend only on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−4/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2κ̃2
+
κ2(κ̃2 + 1)d log d

α4/k

)
, (3.58)

then S is (c3α, α, c2kκκ̃α
1−2/kζ−2/k, c2k

2κ2α1−2/kζ−2/k, c2kκα
1−1/kζ−1/k, c2k

2κ̃2α1−2/kζ−2/k)-

corrupt good with respect to (β,Σ, γ) with probability 1− ζ.

Proof. Since ηi and xi are dependent, we can bound only the k/2-th moment of γ−1Σ−1/2xη.

By the Holder inequality, we have

E
[∣∣〈v,Σ−1/2γ−1xη

〉∣∣k/2] ≤√E
[
|⟨v,Σ−1/2x⟩|k

]
E [|γ−1η|k] ≤ κk/2κ̃k/2 .

The rest of the proof follows similarly to the proof of Lemma 3.4.17.

The preceding resilience lemma and Theorem 22 imply the following optimal utility

guarantee, which achieves an error rate of O(α1−2/k).

Corollary 3.4.20. Under the hypothesis of Lemma 3.4.19, there exists a constant c > 0 such

that for any α ≤ c and k2κ2α1−2/k ≤ c, it is sufficient to have a dataset of size

n = O
(d+ log(1/δ)

αε
+

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−4/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2κ̃2
+
κ2(κ̃2 + 1)d log d

α4/k

)
,

a sensitivity ∆ = O(1/(nα2/k)), and a threshold τ = O(α1−2/k), with large enough constants

for HPTR(S) with the distance function in Eq. (3.26) to achieve (1/γ)∥Σ1/2(β̂ − β)∥ =

O(kκκ̃α1−2/kζ−2/k) with probability 1 − ζ. Further, the same guarantee holds even if an

α-fraction of the samples is arbitrarily corrupted, as in Assumption 4.

This error rate is optimal in its dependence on α under α-corruption. When ηi and

xi are dependent, [22] gives a lower bound of error rate (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(κ̃α1−2/k)
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that holds regardless of how many samples we have and without the privacy constraints.

For completeness, we provide the lower bound in Appendix B.3. If only a robust error

bound under α-corruption is at issue, [217] also achieves the same optimal error bound

but does not provide differential privacy. Further, in this robust but not private case with

ε =∞, our sample complexity improves by a factor of α2/k upon the state-of-the-art sample

complexity of [217, Theorem 3.3], which shows that n = O(d/α2) is sufficient to achieve

(1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−2/k).

Remark. Suppose ζ, κ, κ̃, and k are Θ(1). The sample complexity of HPTR is n =

Õ((d+ log(1/δ))/α2(1−1/k) + d/(αε)). The first term has a gap of a α−2/k factor compared to

the first term of a lower bound of n = Ω̃(d/α2(1−2/k) + d/(α1−2/kε)) from [40, Theorem 4.1],

which holds even for standard, non-robust sub-Gaussian DP linear regression. It remains an

open question whether this gap can be closed, either by a tighter analysis of the resilience for

HPTR or a tighter analysis for a lower bound.

On the upper bound, the gap comes from ensuring stronger resilience than we need. From

Theorem 21, we know that we require ρ1 ≤ c and ρ23 ≤ cα, and from the optimal error rate,

we want ρ1 ≤ cα1−2/k. The resilience we ensure in Lemma 3.4.19 is (α, ρ1 = α1−2/k, ρ2 =

α1−2/k, ρ3 = α1−1/k), which guarantees an unnecessarily small ρ2 and ρ3. A similar slack was

also in the mean estimation, which did not affect the final sample complexity. In this case,

i.e., with linear regression and hypercontractive distributions, it enlarges sample complexity.

Tighter analysis of the resilience, which guarantees a larger ρ2 and ρ3, can improve the first

term in the sample complexity in its dependence on α, but it cannot close the α−2/k gap.

On the lower bound, we apply a construction of [40, Theorem 4.1], which uses Gaussian

distributions and an independent noise. One could potentially tighten the lower bound with

a construction that uses hypercontractive distributions and a dependent noise.

For the second term, we provide a nearly matching lower bound of n = Ω(min{d, log(1/δ)}/αε)

to achieve (1/γ)∥Σ1/2(β̂ − β)∥2 ≤ O(α2−4/k) in Proposition 3.4.21, proving that it is tight

when δ = exp(−Θ(d)). To the best of our knowledge, HPTR is the first algorithm for linear



108

regression that guarantees (ε, δ)-DP under hypercontractive distributions with dependent

noise.

Proposition 3.4.21 (Lower bound of hypercontractive linear regression with dependent

noise). For any k ≥ 4, let Pκ,k,Σ,γ2 be a distribution over (xi, ηi) ∈ Rd × R, where xi is

(κ, k)-hypercontractive with zero mean and covariance Σ, and ηi is (κ, k)-hypercontractive with

zero mean and variance γ2. We observe labelled examples a linear model yi = x⊤i β + ηi with

E[xiηi] = 0 such that β = Σ−1E[yixi] . Let Mε,δ denote a class of (ε, δ)-DP estimators that

are measurable functions over n i.i.d. samples S = {(xi, yi)}ni=1 from a distribution. There

exist positive constants c, γ, κ = O(1) such that, for ε ∈ (0, 10),

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pκ,k,Σ,γ2

1

γ
EPn [∥Σ1/2(β̂(S)− β)∥2] ≥ c min

{(
d ∧ log((1− e−ε)/δ)

nε

)2−4/k

, 1

}
.

Proof. We adopt the same framework as used in the proof of Proposition 3.3.18. We choose

P to be P = PΣ,k. It suffices to construct index set V and indexed family of distributions PV

such that dTV(Pv, Pv′) = α and ρ(βv, βv′) ≥ t, where βv is the least square solution of Pv. By

[3, Lemma 6], there exists a finite set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for all

v ∈ V, and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V. Let fµ,Σ(x) be a density function of N (µ,Σ).

We construct a marginal distribution over Rd as follows

Dv
x(x) =


α/2, if x = −α−1/kv ,

α/2, if x = α−1/kv ,

(1− α)f0,Id×d
(x) otherwise ,

. (3.59)

It is straightforward to verify that EP v
x
[x] = 0, EP v

x
[xx⊤] = (1− α)Id×d + α1−2/kvv⊤ and

thus 1
2
Id×d ⪯ EP v

x
[xx⊤] ⪯ 2Id×d for α ≤ 1/2. Furthermore, we have

Ex∼P v
x
[ | ⟨u, x⟩ |k ] ≤ ⟨u, v⟩k + (1− α)ckk = O(1) ,

where we use the fact that there exists a constant ck > 0 such that the k-th moment of

Gaussian distribution is bounded by ckk. Since 1
2
Id×d ⪯ EP v

x
[xx⊤] ⪯ 2Id×d, we know that x is
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(O(1), k)-hypercontractive. We construct conditional distribution Dv(y|x) as follows

y|x =


−α−1/k if x = −α−1/kv

α−1/k if x = α−1/kv

N (0, 1) otherwise

.

Then, we have

βv = Ex∼P v
x
[xx⊤]−1Ex,y∼P v

x,y
[xy]

= Ex∼P v
x
[xx⊤]−1α1−2/kv .

This implies that t = minv ̸=v′∈V ∥βv − βv′∥ ≥ 1/2α1−2/k minv ̸=v′∈V ∥v − v′∥ = Ω(α1−2/k).

We are left to verify that η = y − ⟨βv, x⟩ is also hypercontractive:

E[|η|k] = α
∣∣α−1/k − v⊤Ex∼P v

x
[xx⊤]−1vα1−3/k

∣∣k + (1− α)Ex∼N (0,2Id×d)[|x|
k] = O(1) ,

where we use the fact that the k-th moment of standard Gaussian is bounded by some

constants Ck > 0 and k = O(1). It is straightforward to see that the total variation distance

dTV(P
v
x,y, P

v′
x,y) = α.

Next, we apply a reduction of estimation to testing with this packing V similar to that

we used in the proof of Proposition 3.3.18. For (ε, δ)-DP estimator β̂, using Theorem 3.3.19,

we have

sup
P∈P

EPn [∥Σ(P )1/2(β̂(S)− β(P ))∥2]

≥ 1

|V|
∑
v∈V

EPn
v
[∥Σ(Pv)

1/2(β̂(S)− β(Pv))∥2]

= t2
1

|V|
∑
v∈V

Pv

(
∥Σ(Pv)

1/2(β̂(S)− β(Pv))∥ ≥ t
)

≍ t2
1

|V|
∑
v∈V

Pv

(
∥β̂(S)− β(Pv)∥ ≥ t

)
≳ t2

ed/2 ·
(
1
2
e−ε⌈nα⌉ − δ

1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,
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where β(P ) is the least squares solution of the distribution P , Σ(P ) is the covariance of x

from P , and the last inequality follows from the fact that d ≥ 2. The rest of the proof follows

from [25, Proposition 4]. We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
and t = Ω(α1−2/k) for ε ∈ (0, 10) so that

sup
P∈P

EPn [∥Σ(P )(β̂(S)− β(P ))∥2] ≳ α2−4/k .

This means that for all k ≥ 4, there exist some κ, γ = O(1) such that

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pκ,k,Σ,γ2

EPn [∥Σ1/2(β̂(S)− β(P ))∥2] ≳ min

{(
d ∧ log(1− e−ε/δ)

nε

)2−4/k

, 1

}
,

which completes the proof by noting that γ = Θ(1).

3.5 Covariance estimation

In a standard covariance estimation, we are given i.i.d. samples S = {xi ∈ Rd}i∈[n] drawn

from a distribution PΣ,Ψ with zero mean, an unknown covariance matrix 0 ≺ Σ ∈ Rd×d, and

an unknown positive semidefinite matrix Ψ := E[(xi⊗xi−Σ♭)(xi⊗xi−Σ♭)⊤] ∈ Rd2×d2 , where

⊗ denotes the Kronecker product. We treat the fourth moment matrix Ψ as a linear operator

on a subspace Ssym ⊂ Rd2 , defined as Ssym := {M ♭ ∈ Rd2 : M is symmetric} following the

definitions and notations from [66].

Definition 3.5.1. For any matrix M ∈ Rd×d, let M ♭ ∈ Rd2 denote its canonical flattening

into a vector in Rd2, and for any vector v ∈ Rd2, let v♯ denote the unique matrix M ∈ Rd×d

such that M ♭ = v.

This definition of Ψ as an operator on Ssym is without loss of generality since here we

apply Ψ only to flattened symmetric matrices, which significantly lightens the notations,

for example, for Gaussian distributions. We consider all d2 × d2 matrices in this section to
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be linear operators on Ssym, and we restrict our support of the exponential mechanism in

Release to be the set of positive definite matrices {Σ̂ ∈ Rd×d : Σ̂ ≻ 0}.

Lemma 3.5.2 ([66, Theorem 4.12]). If PΣ,Ψ = N (0,Σ), then E[xi ⊗ xi] = Σ♭, and, as a

matrix in Rd2×d2, we have Ψn(i−1)+j,n(k−1)+ℓ = Σi,kΣj,ℓ + Σi,ℓΣj,k for all (i, j, k, ℓ) ∈ [d]4; as

an operator on Ssym, we can equivalently write it as Ψ = 2(Σ⊗ Σ).

Further, we can assume an invertible operator Ψ and define the Mahalanobis distance for

xi ⊗ xi, which is DΨ(Σ̂,Σ) = ∥Ψ−1/2(Σ̂♭ − Σ♭)∥. For Gaussian distributions, for example, we

have DΨ(Σ̂,Σ) = (1/
√
2)∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F , where ∥ · ∥F denotes the Frobenius norm of

a matrix. This is a natural choice of a distance because the total variation distance between

two Gaussian distributions is dTV(N (0,Σ),N (0,Σ′)) = O(∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ) (see, for

example, [129, Lemma 2.9]). We want a DP estimate of the covariance Σ with a small

Mahalanobis distance DΨ(Σ̂,Σ). If the sample-generating distribution is not zero-mean, we

can either apply a robust mean estimation with a subset of samples to estimate the mean or

estimate the covariance using zero mean samples of the form {xi − xi+⌈n/2⌉}i∈[n/2].

3.5.1 Step 1: Designing the surrogate DS(Σ̂) for the Mahalanobis distance

To sample only positive definite matrices, we restrict the domain of our score function to be

DΣ : {Σ̂ ∈ Rd×d : Σ̂ ≻ 0} → R+ and assume DΣ(Σ̂) =∞ for non positive definite Σ̂:

DS(Σ̂) = max
V ∈Rd×d:V ⊤=V,∥V ∥F=1

⟨V, Σ̂⟩ − ΣV (MV,α)

ψV (MV,α)
, (3.60)

where we define the set MV,α similarly to the definition in Section 3.3.1. We consider

a projected dataset {⟨V, xix⊤i ⟩}i∈S and partition S into three sets, BV,α, MV,α and TV,α,

where BV,α corresponds to the subset of (2/5.5)αn data points with smallest values in

{⟨V, xix⊤i ⟩}i∈S, TV,α is the subset of top (2/5.5)αn data points with the largest values,

and MV,α is the subset of remaining 1 − (4/5.5)αn data points. For a fixed symmetric

matrix V ∈ Rd×d with ∥V ∥F = 1, we define ΣV (MV,α) = 1
|MV,α|

∑
xi∈MV,α

〈
V, xix

⊤
i

〉
and

ψV (MV,α)
2 = 1

|MV,α|
∑

xi∈MV,α

(〈
V, xix

⊤
i

〉
− ΣV (MV,α)

)2, which are robust estimates of the
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population projected covariance ΣV = ⟨V,Σ⟩ and projected fourth moment ψ2
V = (V ♭)⊤ΨV ♭.

Next, we show that this score function DS(Σ̂) recovers our target error metric DΨ(Σ̂,Σ) =

∥Ψ−1/2(Σ̂♭ − Σ♭)∥ when we substitute ΣV (MV,α) and ψV (MV,α) with population statistics

ΣV and ψV , respectively. This justifies the choice of DS(Σ̂), as discussed in Section 3.3.1.

Lemma 3.5.3. For any 0 ≺ Σ ∈ Rd×d, 0 ≺ Σ̂ and any invertible linear operator Ψ ∈ Rd2×d2

on Ssym, we have

max
V ∈Rd×d:V ⊤=V,∥V ∥F=1

⟨V, Σ̂⟩ − ΣV

ψV

=
∥∥∥Ψ−1/2(Σ̂♭ − Σ♭)

∥∥∥ , (3.61)

where ΣV = ⟨V,Σ⟩ and ψ2
V = (V ♭)⊤ΨV ♭.

This follows immediately from Lemma 3.3.1.

3.5.2 Step 2: Utility analysis under resilience

The following resilience property of the dataset is critical in selecting ∆ and τ and analyzing

utility.

Definition 3.5.4 (Resilience). For some α ∈ (0, 1), ρ1 ∈ R+, and ρ2 ∈ R+, we say a set of

n data points Sgood is (α, ρ1, ρ2)-resilient with respect to (Σ,Ψ) if for any T ⊂ Sgood of size

|T | ≥ (1− α)n, the following holds for all symmetric matrices V ∈ Rd×d with ∥V ∥F = 1:∣∣∣ 1|T |∑
xi∈T

〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

∣∣∣ ≤ ρ1 ψV , and (3.62)∣∣∣∣∣ 1|T |∑
xi∈T

( 〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

)2 − ψ2
V

∣∣∣∣∣ ≤ ρ2 ψV . (3.63)

Note that covariance estimation for {xi} is equivalent to mean estimation for {xi ⊗ xi}.

We can immediately apply the mean estimation utility guarantee in Theorem 19 to show that

∥Ψ−1/2(Σ̂♭ − Σ♭)∥ = O(ρ1) can be achieved with n = O(d2/εα) samples.

Corollary 3.5.5 (Corollary of Theorem 19). There exist positive constants c and C > 0 such

that for any (α, ρ1, ρ2)-resilient dataset S with respect to (Σ,Ψ) satisfying α < c, ρ1 < c and
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ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function in Eq. (3.60), ∆ = 110ρ1/(αn), and

τ = 42ρ1 achieves ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ ≤ 32ρ1 with probability 1− ζ if

n ≥ C
d2 + log(1/(δζ))

εα
. (3.64)

Under Assumption 3 on αcorrupt-corruption and Definition 3.3.3 on corrupt good sets

extended to {xi⊗ xi}ni=1, it follows from Theorem 20 that the same guarantee holds under an

adversarial corruption.

Corollary 3.5.6 (Corollary of Theorem 20). There exist positive constants c and C > 0

such that for any ((1/11)α, α, ρ1, ρ2)-corrupt good set S with respect to (Σ,Ψ) satisfying

α < c, ρ1 < c and ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function in Eq. (3.60),

∆ = 110ρ1/(αn), and τ = 42ρ1 achieves ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ ≤ 32ρ1 with probability 1− ζ if

n ≥ C
d2 + log(1/(δζ))

εα
. (3.65)

3.5.3 Step 3: Near-optimal guarantees

Covariance estimation has been studied for Gaussian distributions under differential privacy

[139, 129, 4] and robust estimation under α-corruption [154, 62, 47, 177, 217]. Note that

from Lemma 3.5.2, we know that Ψ = 2(Σ⊗ Σ) and the Mahalanobis distance simplifies to

DΨ(Σ̂,Σ) = ∥Σ1/2Σ̂Σ−1/2 − Id×d∥F for Gaussian distributions.

3.5.3.1 Gaussian distributions

For Gaussian distributions, the second moment resilience in Eq. (3.62) is satisfied with

ρ1 = O(α log(1/α)), and the 4th moment resilience in Eq. (3.63) is satisfied with ρ2 =

O(α log2(1/α)).

Lemma 3.5.7 (Resilience for Gaussian). Consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d.

samples from N (0,Σ). If n = Ω ((d2 + log(1/ζ))/(α2 log(1/α))) with a large enough constant,

then there exists a constant C > 0 such that S is (α,Cα log(1/α), Cα log2(1/α))-corrupt good

with respect to (Σ,Ψ = 2Σ⊗ Σ) with probability 1− ζ.
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Proof. Since x is Gaussian, by Lemma 3.5.2, we have Ψ = E[(x⊗x−Σ♭)(x⊗x−Σ♭)⊤] = 2Σ⊗Σ.

We can write ψ2
V = 2Tr(V ⊤ΣV Σ) = 2 ⟨V,ΣV Σ⟩.

Lemma 3.5.8 ([154, Lemma B.1] and [73, Fact 4.2]). Let δ > 0 and α ∈ (0, 0.5). A dataset

S = {x1, x2, · · · , xn} consists of n i.i.d. samples from N (0, Id×d). If n = Ω ((d2 + log(1/ζ))/(α2 log(1/α)))

with a large enough constant, then there exists a universal constant C1 > 0 and C2 > 0 such

that with probability 1− ζ, for any subset T ⊂ S and |T | ≥ (1− α)n, we have∥∥∥ 1

|T |
∑
xi∈T

xi ⊗ xi − I♭d×d

∥∥∥ ≤ C1α log(1/α) , and∥∥∥∥∥ 1

|T |
∑
xi∈T

(
xi ⊗ xi − I♭d×d

)(
xi ⊗ xi − I♭d×d

)⊤ − 2Id×d ⊗ Id×d

∥∥∥∥∥ ≤ C2α log(1/α)2 .

By Lemma 3.5.8, we know with probability 1 − ζ that for any subset T ⊂ S and

|T | ≥ (1− α)n, we have∥∥∥ 1

|T |
∑
xi∈T

(Σ−1/2xi)⊗ (Σ−1/2xi)− I♭d×d

∥∥∥ ≤ C1α log(1/α) .

This is equivalent to∣∣∣(V ♭)⊤
1

|T |
∑
xi∈T

(Σ−1/2 ⊗ Σ−1/2)(xi ⊗ xi)− (V ♭)⊤I♭d×d

∣∣∣ ≤ C1α log(1/α) ,

for any ∥V ∥F = 1. This implies that∣∣∣(V ♭)⊤
1

|T |
∑
xi∈T

(xi ⊗ xi)− (V ♭)⊤(Σ⊗ Σ)1/2I♭d×d

∣∣∣ ≤ C1α log(1/α)
√
(V ♭)⊤(Σ⊗ Σ)V ♭ ,

which is also equivalent to, for some constant C,∣∣∣∣∣
〈
V,

1

|T |
∑
xi∈T

xix
⊤
i

〉
− ⟨V,Σ⟩

∣∣∣∣∣ ≤ Cα log(1/α)
√

2 ⟨V,ΣV Σ⟩ ,

which proves the first resilience Eq. (3.62) in Definition 3.5.4.

Similarly, by Lemma 3.5.8, we have∥∥∥∥∥ 1

|T |
∑
xi∈T

(
Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

)(
Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

)⊤ − 2Id×d ⊗ Id×d

∥∥∥∥∥ ≤ C2α log(1/α)2 .
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This is equivalent, for any ∥V ∥F = 1, to∣∣∣ 1|T |∑
xi∈T

〈
V ♭,Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

〉2 − 2
∣∣∣ ≤ C2α log(1/α)2 .

This implies∣∣∣ 1|T |∑
xi∈T

〈
V ♭, xi ⊗ xi − Σ♭

〉2 − 2(V ♭)⊤(Σ⊗ Σ)V ♭
∣∣∣ ≤ C2α log(1/α)2 ⟨V,ΣV Σ⟩ ,

which is also equivalent, for some constant C, to∣∣∣ 1|T |∑
xi∈T

( 〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

)2 − 2Tr(V ⊤ΣV Σ)
∣∣∣ ≤ 2Cα log(1/α)2 ⟨V,ΣV Σ⟩ ,

which proves the second resilience Eq. (3.63) in Definition 3.5.4.

The second and fourth moment resilience properties of Gaussian distributions in Lemma 3.5.7,

together with the utility analysis of HPTR in Corollary. 3.5.6, imply the following utility

guarantee.

Corollary 3.5.9. Under the hypotheses of Lemma 3.5.7, there exists a constant c > 0 such

that for any α ∈ (0, c), a dataset of size

n = O
( d2 + log(1/ζ)

α2 log(1/α)
+
d2 + log(1/(δζ))

αε

)
,

a sensitivity of ∆ = O(log(1/α)/n), and a threshold τ = O(α log(1/α)) with large enough

constants are sufficient for HPTR(S) with a choice of distance function in Eq. (3.60) to

achieve

∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F = O(α log(1/α)) , (3.66)

with probability 1− ζ. Further, the same guarantee holds even if an α-fraction of the samples

is arbitrarily corrupted, as in Assumption 3.
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This Mahalanobis distance guarantee (for the Kronecker product, {xi ⊗ xi}, of the

samples) implies that the predicted Gaussian distribution is close to the sample generating

one in total variation distance (see, for example, [129, Lemma 2.9]) dTV(N (0, Σ̂),N (0,Σ)) =

O(∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ) = O(α log(1/α)). This relation also implies that the error bound

is near-optimal under α-corruption, matching a lower bound up to a factor of O(log(1/α)).

Even if DP is not required and we are given infinite samples, an adversary can move an

α fraction of the probability mass to switch a Gaussian distribution into another one at

Mahalanobis distance ∥Σ−1/2
1 Σ2Σ

−1/2
1 − Id×d∥F = Ω(α). Hence, we cannot tell which of the

two distributions the (potentially infinite) samples came from.

The sample complexity is near-optimal, matching a lower bound up to a factor of

O(log(1/α)) when δ = e−Θ(d2). For a constant ζ, HPTR requires n = O(d2/(α2 log(1/α)) +

d2/(αε) + log(1/δ)/(αε)). This nearly matches a lower bound (that holds even if there is

no corruption) on n to achieve the guarantee of Eq. (3.66) of n = Ω(d2/(α log(1/α))2 +

min{d2, log(1/δ)}/(εα log(1/α)) + log(1/δ)/ε). The first term follows from the classical

estimation of the covariance without DP and matches the first term in our upper bound

up to a O(log(1/α)) factor. The second term follows from extending the lower bound in

[129], constructed for pure differential privacy with δ = 0, and matches the second term

in our upper bound up to a O(log(1/α)) factor when δ = e−Θ(d2). The last term, from

[139], has a gap of O(1/α) factor compared to the third term in our upper bound, but this

term is typically not dominating when δ is large enough, i.e., δ = e−O(d2). We note that a

slightly tighter upper bound is achieved by the state-of-the-art algorithm in [4] that requires

only O(d2/(α log(1/α))2 + d2/(εα log(1/α)) + log(1/δ)/ε). The state-of-the-art polynomial

time algorithm in [133] requires no assumptions on Σ, but the sample complexity is larger:

n = Õ(d2/(α log(1/α))2 + d2polylog(1/δ)/(εα log(1/α)) + d5/2polylog(1/δ)/ε).

If privacy is not an issue (i.e., ε = ∞), HPTR achieves the error in Eq. (3.66) with

n = O(d2/α2 log(1/α)) samples. There are polynomial time estimators that achieve the same

guarantee [154, 62]. The gap of log(1/α) to the lower bound in the error can be tightened

using algorithms that are not computationally efficient, as shown in [47, 177].
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Remark. When we have a sample size of only n = O(d/α2), our analysis provides no

guarantees. However, for robust covariance estimation under α-corruption, one can still

guarantee a bound on a weaker error metric in the spectral norm: ∥Σ−1/2Σ̂Σ−1/2 − Id×d∥ =

O(α log(1/α)) [217, Theorem 3.4]. There is no corresponding DP covariance estimator in

that small sample regime. A promising direction is to apply the HPTR framework, but it

remains challenging to design a score function for this spectral norm distance that depends

only on one-dimensional robust statistics.

3.6 Principal component analysis

In Principal Component Analysis (PCA), we are given i.i.d. samples S = {xi ∈ Rd}ni=1 drawn

from a zero mean distribution PΣ with an unknown covariance matrix Σ. We want to find a

top eigenvector of Σ, u ∈ argmax∥v∥=1 v
⊤Σv, privately. The performance of our estimate û is

measured by how much of the covariance is captured in the direction û relative to that of u,

DΣ(û) = 1− (û⊤Σû/u⊤Σu), where u is one of the top eigenvectors of Σ. When the mean is

not zero, this can be handled similarly to covariance estimation in Section 3.5.

3.6.1 Step 1: Designing the surrogate score function DS(û)

It is straightforward to design a score function of DS : S(d−1) → R+, where S(d−1) is the unit

sphere in Rd

DS(û) = 1− û⊤Σ(Mû,α)û

maxv∈Rd:∥v∥=1 v⊤Σ(Mv,α)v
, (3.67)

whereMû,α ⊂ S is the subset of data points corresponding to the smallest (1− (2/3.5)α)n

values in the projected set Sû = {⟨û, xi⟩2}xi∈S and Σ(Mû,α) = (1/|Mû,α|)
∑

xi∈Mû,α
xix

⊤
i .

Note that when we replace Σ(Mû,α) with the population covariance matrix Σ, we recover

the target error metric of DΣ(û) = 1 − (û⊤Σû/max∥v∥=1 v
⊤Σv). For this choice of DS(û),

the support of the exponential mechanism is already compact, and we do not restrict it any

further, say, to be in Bτ,S. This simplifies the HPTR algorithm and also the analysis, as
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follows. We define

UNSAFEε =
{
S ′ ⊂ Rd×n | ∃S ′′ ∼ S ′ and ∃E such that Pû∼r(ε,∆,S′′)

(û ∈ E) > eεPû∼r(ε,∆,S′)
(û ∈ E)

or Pû∼r(ε,∆,S′)
(û ∈ E) > eεPû∼r(ε,∆,S′′)

(û ∈ E)
}
.

Note that since the support is the same for all S, we can achieve a stronger pure DP with

δ = 0 in the exponential mechanism. However, we still need δ > 0 in the Test step. HPTR

for PCA proceeds as follows.

1. Propose: Propose a target sensitivity bound ∆ = 80ρ2/(αn).

2. Test:

2.1. Compute the safety margin m = minS′ dH(S, S
′) such that S ′ ∈ UNSAFEε/2.

2.2. If m̂ = m+ Lap(2/ε) < (2/ε) log(2/δ), then output ⊥; otherwise, continue.

3. Release: Output û sampled from a distribution with a pdf:

r(ε,∆,S)(û) =
1

Z
exp

(
− ε

4∆
DS(û)

)
,

from S(d−1) = {û ∈ Rd : ∥û∥ = 1} where Z =
∫
S(d−1) exp{−(εDS(û))/(4∆)} dû.

The choice of ρ2 depends on the hypothesis on the tail of the sample-generating distribution,

and α depends on the target accuracy as guided by Theorem 23 (or the fraction of adversarial

corruption in the case of the outlier robust PCA setting in Theorem 24). The target privacy

guarantee determines (ε, δ).

3.6.2 Step 2: Utility analysis under resilience

The following resilience properties are critical in selecting the sensitivity ∆ and in analyzing

the utility.
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Definition 3.6.1 (Resilience for PCA). For some ρ1 ∈ R+, ρ2 ∈ R+, we say a set of n

data points Sgood = {xi ∈ Rd}ni=1 is (α, ρ1, ρ2)-resilient with respect to Σ for some positive

semidefinite Σ ∈ Rd×d if for any T ⊂ Sgood of size |T | ≥ (1− α)n, the following holds for all

v ∈ Rd with ∥v∥ = 1: ∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩
∣∣∣ ≤ ρ1 σv and (3.68)

∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩2 − σ2
v

∣∣∣ ≤ ρ2 σ
2
v . (3.69)

where σ2
v = v⊤Σv.

We refer to Section 3.3.2 for the explanation of how resilience is fundamentally connected

to sensitivity. For an example of a Gaussian distribution, the samples are

(α,O(α
√

log(1/α)), O(α log(1/α)))-resilient (with a large enough n). We show next how

resilience implies an error bound for HPTR, which is O(α log(1/α)) for Gaussian distributions.

Theorem 23. There exist positive constants c and C such that for any (α, ρ1, ρ2)-resilient set

S with respect to some Σ and satisfying α < ρ2 < c, HPTR Section 3.6.1 for PCA with the

choices of the distance function in Eq. (3.67) and ∆ = 80ρ2/(αn) achieves 1− (û⊤Σû/∥Σ∥) ≤

20ρ2 with probability 1− ζ if

n ≥ C

(
log(1/(δζ)) + d log(1/ρ2)

εα

)
. (3.70)

We discuss the implications of this result in Section 3.6.3 for specific instances of the

problem. Under Assumption 3 on αcorrupt-corruption of the data and Definition 3.3.3 on the

corrupt good sets, we show that HPTR is also robust against corruption.

Theorem 24. There exist positive constants c and C such that for any ((2/7)α, α, ρ1, ρ2)-

corrupt good set S with respect to some Σ satisfying α < ρ2 < c, HPTR in Section 3.6.1 for

PCA with the choices of the distance function in Eq. (3.67) and ∆ = 80ρ2/(αn) achieves

1− (û⊤Σû/∥Σ∥) ≤ 20ρ2 with probability 1− ζ if

n ≥ C

(
log(1/(δζ)) + d log(1/ρ2)

εα

)
. (3.71)
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We provide a proof of the robust and DP PCA in Section 3.6.2.2, where Theorem 23

follows immediately by selecting α as a free parameter. As the HPTR Section 3.6.1 for PCA

is significantly simpler, we do not apply the general analysis in Theorem 28; instead, we prove

the preceding theorem directly. To this end, we first show a bound on sensitivity and next

show that the safety test succeeds with high probability in Section 3.6.2.1.

3.6.2.1 Resilience implies bounded local sensitivity

Given the resilience properties of a corrupt good set S, we show that the sensitivity of DS(û)

is bounded by ∆.

Lemma 3.6.2. Suppose α ≤ c for some small enough constant c. For ∆ = 80ρ2/(αn) and a

((2/7)α, α, ρ1, ρ2)-corrupt good S, if

n = Ω
( log(1/(δζ))

αε

)
,

with a large enough constant, then for all S ′ within a Hamming distance k∗ = (2/ε) log(4/(ζδ))

from S, we have

max
S′′∼S′

|DS′′(û)−DS′(û)| ≤ ∆ , (3.72)

for all unit vectors û and all neighboring datasets S ′′.

Proof. The proof is similar to the proof of Lemma 3.3.11. We first assume (k∗ + 1)/n ≤ α/7,

which requires n = Ω(log(1/δζ))/(αε) with a large enough constant. This implies that S ′

is a ((3/7)α, α, ρ1, ρ2)-corrupt good set. The rest of this proof uses this assumption. Let

Tû,α(S ′) ⊂ S be the subset of data points corresponding to the largest (2/3.5)αn values in

the projected set S ′
û = {⟨û, xi⟩2}xi∈S′ . Recall that Sgood is the original resilient dataset before

corruption by an adversary. From Lemma 3.3.4 and the fact that |Sgood∩Tû,α(S ′)| ≥ (1/7)αn,

it follows that (1/|Sgood ∩ Tû,α(S ′)|)
∑

xi∈Sgood∩Tû,α⟨û, xi⟩
2 ≤ (1 + (2ρ2)/((1/7)α))σ

2
û, where

σû =
√
û⊤Σû. This implies that

min
xi∈Sgood∩Tû,α

⟨û, xi⟩2 ≤
(
1 +

2ρ2
(1/7)α

)
σ2
û . (3.73)
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Let Mû,α(S
′) be the remaining subset of S ′, with (1 − (2/3.5)α)n smallest values in

{(⟨û, xi⟩)2}i∈[n]. Mû,α(S
′) andMû,α(S

′′) can differ by at most one data point. Let x′ and x′′

be the unique pair of data points that are inMû,α(S
′) andMû,α(S

′′), respectively. If there is

no such pair, then the two filtered subsets are the same, and the following claims are trivially

true.

If ⟨û, x′′⟩2 ≤ maxxi∈Mû,α(S′) ⟨û, xi⟩2 ≤ minxi∈Sgood∩Tû,α(S′) ⟨û, xi⟩2, we have | ⟨û, x′⟩2 −

⟨û, x′′⟩2 | ≤ (1 + 14ρ2/α)σ
2
û, where σ2

û = û⊤Σû. If ⟨û, x′′⟩2 > maxxi∈Mû,α(S′) ⟨û, xi⟩2, then x′′

is at most ⟨û, x′′⟩2 ≤ minxi∈Sgood∩Tû,α(S′)⟨û, xi⟩2, where equality holds if the smallest point in

the top subset entersMû,α(S
′′). This also implies | ⟨û, x′⟩2 − ⟨û, x′′⟩2 | ≤ (1 + 14ρ2/α)σ

2
û. Let

σ′2
v = v⊤Σ(Mv,α(S

′))v and σ′′2
v = v⊤Σ(Mv,α(S

′′))v. Then, for any ∥v∥ = 1,

∣∣σ′2
v − σ′′2

v

∣∣ =

∣∣∣∣∣∣v⊤
 1

(1− (2/3.5)α)n

∑
xi∈Mv,2α(S′)

xix
⊤
i −

1

(1− (2/3.5)α)n

∑
xi∈Mv,2α(S′′)

xix
⊤
i

 v

∣∣∣∣∣∣
≤ 2

n
|⟨v, x′⟩2 − ⟨v, x′′⟩2| ≤ 2

n

(
1 +

14ρ2
α

)
v⊤Σv ,

for α ≤ c small enough. Then, for the local sensitivity, we have

|DS′(û)−DS′′(û)| ≤
∣∣∣ σ′2

û − σ′′2
û

max∥v∥=1 σ′2
v

∣∣∣+ ∣∣∣ σ′′2
û

max∥v∥=1 σ′2
v

− σ′′2
û

max∥v∥=1 σ′′2
v

∣∣∣
≤ 2

n

(
1 +

14ρ2
α

) û⊤Σû
0.9∥Σ∥

+
1.1û⊤Σû

0.92∥Σ∥2
2

n

(
1 +

14ρ2
α

)
∥Σ∥ ,

where we used the resilience in Eq. (3.69) with a small enough ρ2 ≤ c such that 0.9v⊤Σv ≤

σ′2
v ≤ 1.1v⊤Σv and 0.9v⊤Σv ≤ σ′′2

v ≤ 1.1v⊤Σv (which follow from Lemma 3.6.4). When

ρ2 ≤ α, this is bounded by |DS′û)−DS′′(û)| ≤ 80ρ2/(αn) = ∆.

Since the support is the same for all exponential mechanisms regardless of the dataset,

the sensitivity bound immediately implies safety. The following lemma shows that we have a

sufficient safety margin to succeed with probability of at least 1−ζ since k∗ = (2/ε) log(4/(δζ))

and the threshold is (2/ε) log(2/δ).

Lemma 3.6.3. Under the hypothesis of Lemma 3.6.2, for any S ′ at Hamming distance at

most k∗ from S, we have S ′ ∈ SAFEε/2.
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3.6.2.2 Proof of Theorem 24

This proof is similar to the proof of a universal utility analysis in Theorem 28. First,

we show that we pass the safety test with high probability. By Lemma 3.6.3, we know

m > k∗ = 2/ε log(4/(ζδ)). Then, we have

P (output ⊥) = P (m+ Lap(2/ε) < (2/ε) log(2/δ)) ≤ ζ

2
.

Next, we assume the dataset passed the safety test and show that Pû∼r(ε,∆,S)
(û⊤Σû ≥

(1− 4ρ2)∥Σ∥) ≥ 1− ζ/2.

Lemma 3.6.4. For an ((2/7)α, α, ρ1, ρ2)-corrupt good set S with respect to Σ, then |û⊤Σû−

û⊤Σ(Mû,α)û| ≤ 4ρ2û
⊤Σû.

Proof. We have

|û⊤Σû− û⊤Σ(Mû,α)û| =
|
∑

i∈Mû,α
(⟨û, xi⟩2 − σ2

û)|
(1− (2/3.5)α)n

≤
|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2

û)|
(1− (2/3.5)α)n

+
|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2

û)|
(1− (2/3.5)α)n

(3.74)

For i ∈Mû,α ∩ Sbad, by Lemma 3.3.4, we have

| ⟨û, xi⟩2 − σ2
û| ≤ max

{∑
i∈Tû,α∩Sgood

(⟨û, xi⟩2 − σ2
û)

|Tû,α ∩ Sgood|
, σ2

û

}

≤ 2ρ2σ
2
û

(1/3.5)α
, (3.75)

where in the last inequality, we applied our assumption that ρ2 ≥ α.

By the resilience property in Eq. (3.69) onMû,α ∩ Sgood, we also have

|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2

û)|
|Mû,α ∩ Sgood|

≤ ρ2σ
2
û . (3.76)

Plugging Eq. (3.75) and (3.76) into (3.74), we have

|û⊤Σû− û⊤Σ(Mû,α)û| ≤
2ρ2σ

2
û + (1− (2/3.5)α)ρ2σ

2
û

1− (2/3.5)α
≤ 4ρ2σ

2
û ,

for α ≤ c small enough.
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This implies that |DΣ(û)−DS(û)| ≤ 4ρ2 for an ((2/7)α, α, ρ1, ρ2)-corrupt good set S.

Let µ(·) denote the uniform measure on the unit sphere. By the fact that for any 0 < r < 2,

a cap of radius r on the (d − 1)-dimensional unit sphere S(d−1) has a measure of at least

(1/2)(r/2)d−1 from, for example, [136, Fact 3.1], we have for some constant c2 > 0 and

ρ2 ≤ 1/8,

µ({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) ≥
(
cos−1(1− 4ρ2)/2

)d−1 ≥ e−c2d log(1/ρ2) .(3.77)

By Lemma 3.6.4, the choice of ∆ = 80ρ2/(αn), we have

Pû∼r(ε,∆,S)

(
∥Σ∥ − û⊤Σû ≤ 4ρ2∥Σ∥

)
=

∫
{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û) dµ̂

≥ Vol({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) min
µ̂∈{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û)

≥ Vol(S(d−1))µ({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) min
û∈{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û)

≥ Vol(S(d−1)) e−c2d log(1/ρ2)
1

Z
exp

{
− ε

4∆
max

∥û∥=1,4ρ2≥1− û⊤Σû
∥Σ∥

1− û⊤Σ(Mû,α)û

∥Σ∥

}
≥ Vol(S(d−1)) e−c2d log(1/ρ2)

1

Z
exp

{
− αεn

40

}
,

and similarly,

Pû∼r(ε,∆,S)

(
∥Σ∥ − û⊤Σû ≥ 20ρ2∥Σ∥

)
≤ Vol(S(d−1)) max

û∈{v∈Rd:v⊤Σv≤(1−20ρ2)∥Σ∥,∥v∥=1}
r(ε,∆,S)(û)

≤ Vol(S(d−1))
1

Z
e−εαn(20ρ2−4ρ2)∥Σ∥/(320ρ2∥Σ∥)

≤ Vol(S(d−1))
1

Z
exp

{
− αεn

20

}
This implies that

log

(
Pû∼r(ε,∆,S)

(
λ1 − û⊤Σû ≤ 4ρ2∥Σ∥

)
Pû∼r(ε,∆,S)

(λ1 − û⊤Σû ≥ 20ρ2∥Σ∥)

)
≥ εαn

40
− c2d log(1/ρ2) .

If we set n = Ω
(

log(1/ζ)+d log(1/ρ2)
εα

)
, we get

Pû∼r(ε,∆,S)

(
λ1 − û⊤Σû ≤ 4ρ2λ1

)
Pû∼r(ε,∆,S)

(λ1 − û⊤Σû ≥ 20ρ2λ1)
≥ 2

ζ
,

which completes the proof.
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3.6.3 Step 3: Achievability guarantees

We provide utility guarantees for a private PCA for sub-Gaussian and hypercontractive

distributions.

3.6.3.1 Sub-Gaussian distributions

Using the resilience of sub-Gaussian distributions with respect to (µ = 0,Σ) in Lemma 3.3.12,

which is the same as the resilience properties we need for the PCA in Definition 3.6.1,

Theorem 24 implies the following corollary.

Corollary 3.6.5. Under the hypothesis of Lemma 3.3.12 with µ = 0 and any PSD matrix

Σ ∈ Rd×d, there exist universal constants c and C > 0 such that for any α ∈ (0, c), a dataset

of size

n = O

(
d+ log(1/ζ)

(α log(1/α))2
+

log(1/(δζ)) + d log(1/(α log(1/α)))

εα

)
,

and sensitivity of ∆ = O(log(1/α)/n) with large enough constants are sufficient for HPTR(S)

in Section 3.6.1 for a PCA with the choices of the distance function in Eq. (3.67) to achieve

1− û⊤Σû

∥Σ∥
≤ Cα log(1/α) , (3.78)

with probability 1− ζ. Further, the same guarantee holds even if an α-fraction of the samples

is arbitrarily corrupted, as in Assumption 3.

The error bound is near-optimal under α-corruption, matching a lower bound up to a

factor of O(log(1/α)). HPTR is the first estimator that guarantees (ε, δ)-DP and also achieves

the robust error rate of 1− û⊤Σû/∥Σ∥ = O(α log(1/α)), nearly matching the information-

theoretic lower bound of 1 − û⊤Σû/∥Σ∥ = Ω(α). This lower bound, which can be easily

constructed using N (0, I + αe1e
⊤
1 ) and N (0, I + αe2e

⊤
2 ), holds for any estimator that is

not necessarily private and regardless of how many samples are available. If privacy is not

required, a near-optimal robust error rate can be achieved by outlier-robust PCA approaches

in [145, 121].
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The sample complexity is near-optimal, matching a lower bound up to a factor of

O(log(1/α)) when δ = e−Θ(d). Even for a DP PCA without corrupted samples, HPTR is

the first estimator for sub-Gaussian distributions to nearly match the information-theoretic

lower bound of n = Ω(d/(α log(1/α))2 +min{d, log((1− e−ε)/δ)}/(εα log(1/α))) to achieve

the error in Eq. (3.78). The first term is unavoidable since even without DP and robustness,

when the data comes from a Gaussian distribution, estimating the principal component up to

error α log(1/α) requires Ω(d/(α log(1/α))2) samples (Proposition 3.6.7). The second term in

the lower bound follows from Proposition 3.6.6, which matches the second term in the upper

bound up to a factor of O(log(1/α)) when δ = e−Θ(d) and ε > 0. Existing DP PCA approaches

from [46, 136, 80] are designed for arbitrary samples not necessarily drawn i.i.d., and hence

they require a larger sample size of n = Õ(d/α2 + d1.5
√

log(1/δ)/(αε)) i.i.d. samples from a

Gaussian distribution to achieve the guarantee in Eq. (3.78), where Õ hides polylogarithmic

terms in 1/α and 1/ζ.

Remark. Rank-k PCA under α-corruption from a Gaussian dataset is of great practical

interest. An outlier-robust PCA algorithm in [145, Appendix D] outputs an orthonormal

matrix Û ∈ Rd×k achieving

Tr(U⊤
k ΣUk)− Tr(Û⊤ΣÛ) = O

(
αTr(U⊤

k ΣUk) + νk1/2α log(1/α)
)
,

where Uk ∈ argmaxU⊤U=Ik×k
U⊤ΣU and ν2 = maxV ∈Rd×d,∥V ∥F=1,V=V ⊤,rank(V )≤k⟨V,ΣV Σ⟩. It

is a promising direction to design a DP rank-k PCA algorithm by applying the HPTR

framework that can achieve a similar error rate. It is not immediately clear how to design an

appropriate score function for general rank k, and a simple technique of peeling off rank-one

components one-by-one (using the rank-one PCA with HPTR) will not achieve the target

error bound.

Proposition 3.6.6 (Lower bound for private sub-Gaussian PCA). Let PΣ be the set of

zero-mean sub-Gaussian distributions with covariance Σ ∈ Rd×d. Let Mε,δ be a class of

(ε, δ)-DP, d-dimensional estimators of the top principal component of Σ using n i.i.d. samples
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from P ∈ PΣ. Then, for ε ∈ (0, 10), there exists a universal constant c > 0 such that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{
d ∧ log((1− e−ε)/δ)

nε
, 1

}
.

Proof. We adopt the same proof strategy as the proof of Proposition 3.3.18 for mean estimation.

By [3, Lemma 6], there exists a finite index set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for

all v ∈ V and ∥v−v′∥ ≥ 1/2 for all v ̸= v′ ∈ V . For each v ∈ V , we define Σv := Id×d+αvv
⊤ and

Pv := N (0,Σv) for some α ∈ (0, 1/2). It is straightforward to see that Id×d ⪯ Σv ⪯ 3Id×d/2

and the top eigenvector of Σv is v. For v ̸= v′ ∈ V , we know ∥Σ−1/2
v′ ΣvΣ

−1/2
v′ − Id×d∥F = O(α).

By [129, Lemma 2.9], this implies dTV(N (0,Σv),N (0,Σ′
v)) = O(α).

Since ∥v − v′∥ ≥ 1/2, we have

DΣv′
(v) = 1− v⊤Σ′

vv

∥Σv′∥
= 1− 1 + α ⟨v, v′⟩2

1 + α
≥ α

8(1 + α)
>

α

12
.

The principal component estimation problem can be reduced to a testing problem with

this packing V . For the (ε, δ)-DP estimator û, using Lemma 3.3.19, let t = α
12

, we have

sup
P∈PΣ

ES∼Pn [DΣ(û)] ≥
1

|V|
∑
v∈V

ES∼Pn
v
[DΣv(û)]

=
1

|V|
∑
v∈V

Pv (DΣv(û) ≥ t)

≳ t
ed/2 ·

(
1
2
e−ε⌈nα⌉ − δ

1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2. The rest of the proof follows from

[25, Proposition 4]. We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈PΣ

ES∼Pn [DΣv(û)] ≳ α .

This implies, for t = α/12 and ε ∈ (0, 10), that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn [DΣ(û)] ≳ min

{
d ∧ log((1− e−ε)/δ)

nε
, 1

}
,

which completes the proof.
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It is well known that even for Gaussian distributions, learning the principal component

up to error α requires Ω(d/α2). We provide a lower bound proof here for completeness.

Proposition 3.6.7 (Sample Complexity Lower bound for PCA). Let PΣ be the set of zero-

mean Gaussian distributions with covariance Σ ∈ Rd×d. Let Md be the class of estimators of

the d-dimensional top principal component of Σ using n i.i.d. samples from P ∈ PΣ. There

exists a universal constant c > 0 such that

inf
û∈Md

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Proof. The following proposition helps to prove a minimax lower bound on estimating ∥Σ∥.

We first define some notations.

Definition 3.6.8 (Definition 3.1 in [68]). For a distribution A on the real line with probability

density function A(x) and a unit vector v ∈ Rd, consider the distribution over Rn with

probability density function Pv(x) = A(v⊤x) exp(−∥x− (v⊤x)v∥22/2) · (2π)−(d−1)/2.

Proposition 3.6.9 (Proposition 7.1 in [68]). Let A be a distribution on R such that A

has a mean 0 and χ2(A,N(0, 1)) is finite. Then, there is no algorithm for any d, given

n < d/(8χ2(A,N(0, 1))) samples from a distribution D over Rd which is either N(0, I) or Pv

for some unit vector v ∈ Rd, that correctly distinguishes between the two cases with probability

at least 2/3.

To apply Proposition 3.6.9, let A be Gaussian distribution N (0, 1 + α). Through simple

calculation, it can be shown that χ2(N (0, 1),N (0, 1 + α)) = 1√
1−α2 − 1 ≤ α2 whenever

α2 ≤ 1/2. Then, for the first case in Proposition 3.6.9, ∥Σ∥ = ∥I∥ = 1, the second case has

∥Σ∥ = 1 + α, and Proposition 3.6.9 implies that there exists absolute constant c such that

inf
λ̂

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− λ̂(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Since we can turn a principal component estimator u(S) into an estimator of ∥Σ∥ through n

additional fresh samples to estimate u(S)⊤Σu(S) up to a minor multiplicative error O(1/
√
n).
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This implies there exists a universal constant c > 0 such that

inf
û∈Md

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

3.6.3.2 Hypercontractive distributions

In this section, we apply our results on hypercontractive distributions in Definition 3.3.14. Us-

ing the resilience of hypercontractive distributions with respect to (µ = 0,Σ) in Lemma 3.3.15,

which is the same as the resilience properties we need for PCA in Definition 3.6.1, Theorem 24

implies the following corollary.

Corollary 3.6.10. Under the hypothesis of Lemma 3.3.15 with k ≥ 3, µ = 0 and any PSD

matrix Σ ∈ Rd×d, there exist universal constants c and C > 0 such that for any α ∈ (0, c), a

dataset of size

n = O

(
d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k
+

log(1/(δζ)) + d log(1/α1−2/k)

εα

)
,

and sensitivity of ∆ = O(α1−2/k/n) with large enough constants are sufficient for HPTR(S)

in Section 3.6.1 for PCA with the choices of the distance function in Eq. (3.67) to achieve

1− û⊤Σû

∥Σ∥
≤ Cα1−2/k , (3.79)

with probability 1− ζ. Further, the same guarantee holds even if an α-fraction of the samples

is arbitrarily corrupted, as in Assumption 3.

The error bound is optimal under α-corruption up to a constant factor. HPTR is the first

estimator that guarantees (ε, δ)-DP and also achieves the robust error rate of 1− û⊤Σû/∥Σ∥ =

O(α1−2/k), matching the information-theoretic lower bound of 1− û⊤Σû/∥Σ∥ = Ω(α1−2/k).

This lower bound can be easily constructed using Eq. (3.59), where two hypercontractive

distributions are at total variation distance O(α) and the top principal component of one

distribution achieves an error lower bounded by 1− û⊤Σû/∥Σ∥ = Ω(α1−2/k). Even if privacy
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is not required, there is no outlier-robust PCA estimator matching this optimal error rate for

a general k.

The sample complexity is n = Õ(d/α2(1−1/k)+(d+log(1/δ))/(εα)) for a constant ζ, k, and κ,

where Õ hides logarithmic factors in 1/α and d. Even for DP PCA without corrupted samples,

HPTR is the first estimator for hypercontractive distributions to guarantee differential privacy.

The information-theoretic lower bound is n = Ω(d/α2(1−2/k)+min{d, log((1−e−ε)/δ)}/(αε)) to

achieve the error in Eq. (3.79). The first term is unavoidable, even without DP and robustness,

when the data comes from a Gaussian distribution because estimating the principal component

up to error α1−2/k requires Ω(d/α2(1−2/k)) samples (Proposition 3.6.7). There is a gap of factor

O(α−2/k) compared to the first term in our upper bound. Since the sample complexity lower

bound in Proposition 3.6.7 is constructed using Gaussian distributions, it might be possible to

tighten it further using hypercontractive distributions. The second term in the lower bound

follows from Proposition 3.6.11, which matches the last term in the upper bound up to a

factor of O(log(1/α)) when δ = e−Θ(d) and ε > 0. To the best of our knowledge, HPTR is

the first algorithm for PCA that guarantees (ε, δ)-DP under hypercontractive distributions.

Proposition 3.6.11 (Lower bound for hypercontractive private PCA). Let PΣ be the set of

zero-mean hypercontractive distributions with covariance Σ ∈ Rd×d. Let Mε,δ be a class of

(ε, δ)-DP estimators using n i.i.d. samples from P ∈ PΣ. Then, for ε ∈ (0, 10), there exists a

constant c such that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û⊤Σû

∥Σ∥

]
≥ cmin

{(
d ∧ log((1− e−ε)/δ)

nε

)1−2/k

, 1

}
. (3.80)

Proof. We use the same construction as used in the distribution of x in the proof of Propo-

sition 3.4.21. By [3, Lemma 6], there exists a finite index set V ⊂ Rd with cardinality

|V| = 2Ω(d), ∥v∥ = 1 for all v ∈ V and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V . For each v ∈ V and

α ∈ (0, 1/2), we construct the density function of distribution Pv as defined in Eq. (3.59).

Let Σv denote the covariance matrix of Pv. The proof of Proposition 3.4.21 shows that

Σv = (1− α)Id×d + α1−2/kvv⊤, dTV(Pv, P
′
v) = α and that Pv is (O(1), k)-hypercontractive.
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Since ∥v − v′∥ ≥ 1/2, we know that ⟨v, v′⟩ ≤ 7/8, and we have

DΣv′
(v) = 1− v⊤Σ′

vv

∥Σv′∥
= 1− 1− α + α1−2/k ⟨v, v′⟩2

1− α + α1−2/k
≥ α1−2/k

8(1− α + α1−2/k)
>
α1−2/k

12
,

for α < c small enough.

Next, we apply the reduction of estimation to testing with this packing V . For a (ε, δ)-DP

estimator û, using Lemma 3.3.19, let t = α1−2/k

12
. Then, we have

sup
P∈PΣ

ES∼Pn [DΣ(û)] ≥
1

|V|
∑
v∈V

ES∼Pn
v
[DΣv(û)]

=
1

|V|
∑
v∈V

Pv (DΣv(û) ≥ t)

≳ t
ed/2 ·

(
1
2
e−ε⌈nα⌉ − δ

1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2.

The rest of the proof follows from [25, Proposition 4]. We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈P

ES∼Pn [DΣv(û)] ≳ α1−2/k .

This means, for t = (1/12)α1−2/k and ε ∈ (0, 10), that

inf
û∈Mε,δ

sup
P∈P

ES∼Pn [DΣ(û)] ≳ min

{(
d ∧ log((1− e−ε)/δ)

nε

)1−2/k

, 1

}
,

which completes the proof.

3.7 Discussion

We provided a universal framework for characterizing the statistical efficiency of statistical

estimation problems with differential privacy guarantees. Our framework, High-dimensional

Propose-Test-Release (HPTR), is computationally inefficient and builds upon three key
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components: the exponential mechanism, robust statistics, and the Propose-Test-Release

mechanism. Our key insight is that designing an exponential mechanism that accesses

the data via only one-dimensional robust statistics can dramatically reduce the resulting

local sensitivity. Using resilience, a central concept in robust statistics, we can provide

tight local sensitivity bounds. These tight bounds readily translate into near-optimal utility

guarantees in several statistical estimation problems of interest: mean estimation, linear

regression, covariance estimation, and principal component analysis. Although our framework

is written as a conceptual algorithm without a specific implementation, it is possible to

implement it with exponential computational complexity following the guidelines of [34],

where a similar exponential mechanism with PTR was proposed and an implementation was

explicitly provided.

To protect against membership inference attacks, significant progress has been made

in training DP models that are practical [1, 213, 13]. To protect against data poisoning

attacks, a recent work utilizes robust statistics with great success [104]. In practice, however,

we need to protect against both types of attacks to facilitate learning and analysis from

shared data. Currently, there is an algorithmic deficiency in this space. Efficient algorithms

achieving both DP and robustness against adversarial corruption are known only for mean

estimation [160]. We make a valuable contribution to the design of such algorithms for a

broad class of problems, including covariance estimation, principal component analysis, and

linear regression.

Further, these computationally efficient algorithms typically require more samples. For

sub-Gaussian mean estimation with known covariance Σ, an efficient approach of [160]

requires Õ(d/α2 + d3/2/(εα)) samples under α-corruption and (ε, δ)-DP to achieve an error of

∥Σ−1/2(µ̂− µ)∥ = Õ(α). HPTR requires only O(d/α2 + d/(εα)) samples. A significant open

question is whether this d1/2 gap is fundamental and cannot be improved.
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Chapter 4

DIFFERENTIALLY PRIVATE PCA

4.1 Introduction

Principal Component Analysis (PCA) is a fundamental statistical tool with multiple applica-

tions including dimensionality reduction, data visualization, and noise reduction. Naturally,

it is a key part of most standard data analysis and ML pipelines. However, when applied to

data collected from numerous individuals, such as the U.S. Census data, outcome of PCA

might reveal highly sensitive personal information. We investigate the design of privacy

preserving PCA algorithms and the involved privacy/utility tradeoffs, for computing the first

principal component, that should serve as the building block of more general rank-k PCA.

Differential privacy (DP) is a widely accepted mathematical notion of privacy introduced in

[78], which is a standard in releasing the U.S. Census data [2] and also deployed in commercial

systems [189, 82, 84]. A query to a database is said to be (ε, δ)-differentialy private if a strong

adversary who knows all other entries but one cannot infer that one entry from the query

output, with high confidence. The parameters ε and δ restricts the confidence as measured

by the Type-I and II errors [128]. Smaller values of ε ∈ [0,∞) and δ ∈ [0, 1] imply stronger

privacy and plausible deniability for the participants.

For non-private PCA with n i.i.d. samples in d dimensions, the popular Oja’s algorithm

(provided in Algorithm 10) achieves the optimal error of sin(v̂, v1) = Θ̃(
√
d/n), where the

error is measured by the sine function of the angle between the estimate, v̂, and the principal

component, v1, [119]. For differentially private PCA, there is a natural fundamental question:

what is the extra cost we pay in the error rate for ensuring (ε, δ)-DP?

We introduce a novel approach we call DP-PCA (Algorithm 12) and show that it achieves

an error bounded by sin(v̂, v) = Õ(
√
d/n + d/(εn)) for sub-Gaussian-like data defined in
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Assumption 5, which is a broad class of light-tailed distributions that includes Gaussian data

as a special case. The second term characterizes the cost of privacy and this is tight; we prove

a nearly matching information theoretic lower bound showing that no (ε, δ)-DP algorithm

can achieve a smaller error. This significantly improves upon a long line of existing private

algorithms for PCA, e.g., [46, 33, 103, 101, 80]. These existing algorithms are analyzed for

fixed and non-stochastic data and achieve sub-optimal error rates of O(
√
d/n+ d3/2/(εn))

even in the stochastic setting we consider.

A remaining question is whether the sub-Gaussian-like assumption, namely Assump-

tion A.4, is necessary or if it is an artifact of our analysis and our algorithm. It turns out

that such an assumption on the lightness of the tail is critical; we prove an algorithmic

independent and information theoretic lower bound (Theorem 4.5.4) to show that, without

such an assumption, the cost of privacy is lower bounded by Ω(
√
d/(εn)). This proves a

separation of the error depending on the lightness of the tail.

We start with the formal description of the stochastic setting in Section 4.2 and present

Oja’s algorithm for non-private PCA. Our first attempt in making this algorithm private

in Section 4.3 already achieves near-optimal error, if the data is strictly from a Gaussian

distribution. However, there are two remaining challenges that we describe in detail in

Section 4.4: (i) the excessive number of iterations of Private Oja’s Algorithm (Algorithm 11)

prevents using typical values of ε used in practice, and (ii) for general sub-Gaussian-like

distributions, the error does not vanish even when the noise in the data (as measured by

a certain fourth moment of a function of the data) vanishes. The first challenge is due to

the analysis that requires amplification by shuffling [81] that is restrictive. The second is

due to its reliance on gradient norm clipping [1] that does not adapt to the geometry of

the current gradients. This drives the design of DP-PCA in Section 4.5 that critically relies

on two techniques to overcome each challenge, respectively. First, minibatch SGD (instead

of single sample SGD) significantly reduces the number iterations, thus obviating the need

for amplification by shuffling. Next, private mean estimation (instead of gradient norm

clipping and noise adding) adapts to the geometry of the problem and adds the minimal noise
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necessary to achieve privacy. The main idea of this geometry adaptive stochastic gradient

update is explained in detail in Section 4.6, along with a sketch of a proof.

Notations. For a vector x ∈ Rd, we use ∥x∥ to denote the Euclidean norm. For a matrix

X ∈ Rd×d, we use ∥X∥2 = max∥v∥=1 ∥Xv∥2 to denote the spectral norm. We use Id to denote

d× d identity matrix. For n ∈ Z+, let [n] := {1, 2, . . . , n}. Let Sd−1
2 denote the unit d-sphere

of ℓ2, i.e., Sd−1
2 := {x ∈ Rd : ∥x∥ = 1}. Õ() hides logarithmic factors in n, d, and the failure

probability ζ.

4.2 Problem formulation and background on DP

Typical PCA assumes i.i.d. data {xi ∈ Rd} from a distribution and finds the first eigenvector

of Σ = E[(xi − E[xi])(xi − E[xi])⊤] ∈ Rd×d. Our approach allows for a more general class of

data {Ai ∈ Rd×d} that recovers the standard case when Ai = (xi − E[xi])(xi − E[xi])⊤.

Assumption 5 ((Σ, {λi}di=1,M, V,K, κ, a, γ2)-model). Let A1, A2, . . . , An ∈ Rd×d be a se-

quence of (not necessarily symmetric) matrices sampled independently from the same distri-

bution that satisfy the following with PSD matrices Σ ∈ Rd×d and Hu ∈ Rd×d, and positive

scalar parameters M,V,K, κ, a, and γ2:

A.1. Let Σ := E[Ai], for a symmetric positive semidefinite (PSD) matrix Σ ∈ Rd×d, λi

denote the i-th largest eigenvalue of Σ, and κ := λ1/(λ1 − λ2),

A.2. ∥Ai − Σ∥2 ≤ λ1M almost surely,

A.3. max
{∥∥E [(Ai − Σ)(Ai − Σ)⊤

]∥∥
2
,
∥∥E [(Ai − Σ)⊤(Ai − Σ)

]∥∥
2

}
≤ λ21V ,

A.4. max∥u∥=1,∥v∥=1 E
[
exp

((
|u⊤(A⊤

i −Σ)v|2
K2λ2

1∥Hu∥2

)1/(2a))]
≤ 2, where Hu := (1/λ21)E[(Ai−Σ)uu⊤(Ai−

Σ)⊤]. We denote γ2 := max∥u∥=1 ∥Hu∥2.

The first three assumptions are required for PCA even if privacy is not needed. The last

assumption provides a Gaussian-like tail bound that determines how much noise we need to

introduce in the algorithm for (ε, δ)-DP. The following lemma is useful in the analyses.
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Lemma 4.2.1. Under A.1 and A.4 in Assumption 5, for any unit vector u, v, with probability

1− ζ,

|u⊤(A⊤
i − Σ)v|2 ≤ K2λ21∥Hu∥2 log2a(2/ζ) . (4.1)

4.2.1 Oja’s algorithm

In a non-private setting, the following streaming algorithm introduced in [172] achieves

optimal sample complexity as analyzed in [119]. It is a projected stochastic gradient ascent

on the objective defined on the empirical covariance: max∥w∥=1(1/n)
∑n

i=1w
⊤Aiw.

Algorithm 10: (Non-private) Oja’s Algorithm

1 Choose w0 uniformly at random from the unit sphere

2 for t = 1, 2, . . . , T do w′
t ← wt−1 + ηtAtwt−1 , wt ← w′

t/∥w′
t∥

3 Return wT

Central to our analysis is the following error bound on Oja’s Algorithm from [119].

Theorem 4.2.2 ([119, Theorem 4.1]). Under Assumptions A.1-A.3, suppose the step size

ηt =
α

(λ1−λ2)(ξ+t)
for some α > 1/2 and ξ := 20max (κMα, κ2 (V + 1)α2/log(1 + (ζ/100))).

If T > ξ then there exists a constant C > 0 such that Algorithm 10 outputs wT achieving

w.p. 1− ζ,

sin2 (wT , v1) ≤
C log(1/ζ)

ζ2

(
α2κ2V

(2α− 1)T
+ d

(
ξ

T

)2α
)
. (4.2)

4.2.2 Background on Differential Privacy

Differential privacy (DP), introduced in [78], is a de facto mathematical measure for privacy

leakage of a database accessed via queries. It ensures that even an adversary who knows all

other entries cannot identify with a high confidence whether a person of interest participated

in a database or not.

Definition 4.2.3 (Differential privacy [78]). Given two multisets S and S ′, we say the pair

(S, S ′) is neighboring if |S \ S ′|+ |S ′ \ S| ≤ 1. We say a stochastic query q over a dataset S
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satisfies (ε, δ)-differential privacy for some ε > 0 and δ ∈ (0, 1) if P(q(S) ∈ A) ≤ eεP(q(S ′) ∈

A) + δ for all neighboring (S, S ′) and all subset A of the range of q.

Small values of ε and δ ensures that the adversary cannot identify any single data point

with high confidence, thus providing plausible deniability. We provide useful DP lemmas

in Appendix 2.1.1. Within our stochastic gradient descent approach to PCA, we rely on

the Gaussian mechanism to privatize each update. The sensitivity of a query q is defined as

∆q := supneighboring (S,S′) ∥q(S)− q(S ′)∥.

Lemma 4.2.4 (Gaussian mechanism [79]). For a query q with sensitivity ∆q, ε ∈ (0, 1),

and δ ∈ (0, 1), the Gaussian mechanism outputs q(S) +N (0, (∆q(
√

2 log(1.25/δ))/ε)2Id) and

achieves (ε, δ)-DP.

This is a special case of a family of output perturbation mechanisms which includes the

Laplace mechanism [78] and stair-case mechanisms [94]. The latter is shown to be optimal

in one-dimension [95] and for hypothesis testing under local DP [126]. Another mechanism

we frequently use is the private histogram learner of [140], whose analysis is provide in

Appendix 2.1.1, along with various composition theorems to provide end-to-end guarantees.

4.2.3 Comparisons with existing results in private PCA

We briefly discuss the most closely related work and provide more previous work in Ap-

pendix C.1. Most existing results assume a fixed data under a deterministic setting where

each sample has a bounded norm, ∥xi∥ ≤ β, and the goal is to find the top eigenvector of

Σ̂ := (1/n)
∑n

i=1(xi − µ̂)(xi − µ̂)⊤ for the empirical mean µ̂. For the purpose of comparisons,

consider Gaussian xi ∼ N (0,Σ) with ∥xi∥ ≤ β = O(
√
λ1d log(n/ζ)) for all i ∈ [n] with

probability 1− ζ. The first line of approaches in [33, 46, 80] is a Gaussian mechanism that

outputs PCA(Σ̂ + Z), where Z is a symmetric matrix with i.i.d. Gaussian entries with a

variance ((β2/nε)
√

2 log(1.25/δ))2 to ensure (ε, δ)-DP. The tightest result in [80, Theorem 7]

achieves

sin(v̂, v1) = Õ
(
κ
(√d

n
+
d3/2

√
log(1/δ)

εn

))
, (4.3)
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Algorithm 11: Private Oja’s Algorithm
Input: S = {Ai ∈ Rd×d}ni=1, privacy (ε, δ), learning rates {ηt}nt=1

1 Randomly permute S and choose w0 uniformly at random from the unit sphere

2 Set DP noise multiplier: α← C ′ log(n/δ)/(ε
√
n)

3 Set clipping threshold: β ← Cλ1
√
d(Kγ loga(nd/ζ) + 1)

4 for t=1, 2, . . . , n do

5 Sample zt ∼ N (0, Id)

6 w′
t ← wt−1 + ηt clipβ (Atwt−1) + 2ηtβαzt where clipβ(x) = x ·min{1, β

∥x∥2}

7 wt ← w′
t/∥w′

t∥

8 Return wn

with high probability, under a strong assumption that the spectral gap is very large: λ1−λ2 =

ω(d3/2
√
log(1/δ)/(εn)). In a typical scenario with λ1 = O(1), this requires a large sample size

of n = ω(d3/2/ε). Since this Gaussian mechanism does not exploit the statistical properties

of i.i.d. samples, the second term in this upper bound is larger by a factor of d1/2 compared

to the proposed DP-PCA (Corollary 4.5.2). The error rate of Eq. (4.3) is also achieved

in [103, 101] by adding Gaussian noise to the standard power method for computing the

principal components. When the spectral gap, λ1 − λ2, is smaller, it is possible to trade-off

the dependence in κ and the sampling ratio d/n, which we do not address in this work but is

surveyed in Appendix C.1.

4.3 First attempt: making Oja’s Algorithm private

Following the standard recipe in training with DP-SGD, e.g., [1] and a recent work [199],

we introduce Private Oja’s Algorithm in Algorithm 11. At each gradient update, we first

apply gradient norm clipping to limit the contribution of a single data point and next add

an appropriately chosen Gaussian noise from Lemma D.2.1 to achieve (ε, δ)-DP, end-to-end.

The choice of clipping threshold β ensures that, with high probability under our assumption,

we do not clip any gradients. The choice of noise multiplier α ensures (ε, δ)-DP.
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One caveat in streaming algorithms is that we access data n times, each with a private

mechanism, but accessing only a single data point at a time. To prevent excessive privacy

loss due to such a large number of data accesses, we apply a random shuffling in line 1

Algorithm 11, in order to benefit from a standard amplification by shuffling [81, 86]. This

gives an amplified privacy guarantee that allows us to add a small noise proportional to

α = O(log(n/δ)/(ε
√
n)). Without the shuffle amplification, we will instead need a larger noise

scaling as α = O(log(n/δ)/ε), resulting in a suboptimal utility guarantee. However, this comes

with a restriction that the amplification holds only for small values of ε = O(
√
log(n/δ)/n).

Our first contribution in the proposed DP-PCA (Algorithm 12) is to expand this range to

ε = O(1), which includes the practical regime of interest ε ∈ [1/2, 5].

Lemma 4.3.1 (Privacy). If ε = O(
√

log(n/δ)/n) and the noise multiplier is chosen to be

α = Ω(log(n/δ)/(ε
√
n)), then Algorithm 11 is (ε, δ)-DP.

Under Assumption 5, we select gradient norm clipping threshold β such that no gradient

exceeds β.

Lemma 4.3.2 (Gradient clipping). Let β = Cλ1
√
d(Kγ loga(nd/ζ) + 1) for some constant

C > 0. Then with probability 1− ζ, ∥Atwt−1∥ ≤ β for any fixed wt−1 independent of At, for

all t ∈ [n].

We provide proofs of both lemmas and the next theorem in Appendix C.4. When no

clipping is applied, we can use the standard analysis of Oja’s Algorithm from [119] to prove

the following utility guarantee.

Theorem 4.3.3 (Utility). Given n i.i.d. samples {Ai ∈ Rd×d}ni=1 satisfying Assumption 5

with parameters (Σ,M, V,K, κ, a, γ2), if

n = Õ
(
κ2 + κM + κ2V +

d κ (γ + 1) log(1/δ)

ε

)
, (4.4)

with a large enough constant, then there exists a positive universal constant c1 and a choice of

learning rate ηt that depends on (t,M , V , K, a, λ1, λ1−λ2, n, d, ε, δ) such that Algorithm 11
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with a choice of ζ = 0.01 outputs wn that achieves with probability 0.99,

sin2 (wn, v1) = Õ

(
κ2
(V
n

+
(γ + 1)2d2 log2(1/δ)

ε2n2

))
, (4.5)

where Õ(·) hides poly-logarithmic factors in n, d, 1/ε, and log(1/δ) and polynomial factors

in K.

The first term in Eq. (4.5) matches the non-private error rate for Oja’s algorithm in

Eq. (4.2) with α = O(log n) and T = n, and the second term is the price we pay for ensuring

(ε, δ)-DP.

Remark 4.3.4. For a canonical setting of a Gaussian data with Ai = xix
⊤
i and xi ∼ N (0,Σ),

we have, for example from [176, Lemma 1.12], that M = O(d log(n)), V = O(d), K = 4,

a = 1, and γ2 = O(1). Theorem 4.3.3 implies the following error rate:

sin2 (wn, v1) = Õ
(
κ2
(d
n
+
d2 log2(1/δ)

ε2n2

))
. (4.6)

Comparing to a lower bound in Theorem 4.5.3, this is already near optimal. However,

for general distributions satisfying Assumption 5, Algorithm 11 (in particular the second

term in Eq. (4.5)) can be significantly sub-optimal. We explain this second weakness of

Private Oja’s Algorithm in the following section (the first weakness is the restriction on

ε = O(
√
log(n/δ)/n)).

4.4 Two remaining challenges

We explain the two remaining challenges in Private Oja’s Algorithm and propose techniques

to overcomes these challenges that lead to the design of DP-PCA (Algorithm 12).

First challenge: restricted range of ε = O(
√
log(n/δ)/n). This is due to the

large number, n, of iterations that necessitates the use of the amplification by shuffling in

Theorem C.4.1. We reduce the number of iterations with minibatch SGD. For T = O(log2 n)
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and t = 1, 2, . . . , T , we repeat

w′
t ← wt−1 +

ηt
B

Bt−1∑
i=1+B(t−1)

clipβ(Aiwt−1) +
wηtβα

B
zt , and wt ← w′

t/∥w′
t∥ , (4.7)

where zt ∼ N (0, Id) and the minibatch size is B = ⌊n/T ⌋. Since the dataset is accessed

only T = O(log2 n) times, the end-to-end privacy is analyzed with the serial composition

(Lemma C.2.2) instead of the amplification by shuffling. This ensures (ε, δ)-DP for any

ε = O(1), resolving the first challenge, and still achieves the utility guarantee of Eq. (4.5).

Second challenge: excessive noise for privacy. This is best explained with an example.

Example 4.4.1 (Signal and noise separation). Consider a setting with Ai = xix
⊤
i and xi =

si + ni where si = v with probability half and si = −v otherwise for a unit norm vector v and

ni ∼ N (0, σ2I). We want to find the principal component of Σ = E[xix⊤i ] = vv⊤+σ2I, which is

v. This construction decomposes the signal and the noise. For Ai = vv⊤+sin
⊤
i +nis

⊤
i +nin

⊤
i ,

the signal component is determined by vv⊤ that is deterministic due to the sign cancelling. The

noise component is sin⊤
i + nis

⊤
i + nin

⊤
i which is random. We can control the Signal-to-Noise

Ratio (SNR), 1/σ2, by changing σ2, and we are particularly interested in the regime where

σ2 is small. As we are interested in σ2 < 1, this satisfies Assumption 5 with λ1 = 1 + σ2,

λ2 = σ2, V = O(dσ2), K = O(1), a = 1, and γ2 = σ2. Substituting this into Eq. (4.5),

Private Oja’s Algorithm achieves

sin2(wn, v1) = Õ
(σ2d

n
+
d2 log(1/δ)

ε2n2

)
, (4.8)

where we are interested in σ2 < 1.

This is problematic since the second term, due to the DP noise, does not vanish as the

randomness σ2 in the data decreases. We do not observe this for Gaussian data where signal

and noise scale proportionally as shown below. We reduce the noise we add for privacy,

by switching from a simple norm clipping, that adds noise proportional to the norm of the

gradients, to private estimation, that only requires the noise to scale as the range of the
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Figure 4.1: 2-d PCA under the Gaussian data from Remark 4.3.4 (left) shows that the average

gradient (red arrow) is smaller than the range of the minibatch of 400 gradients (blue dots).

Under Example 4.4.1 (right), the range can be made arbitrarily smaller than the average

gradient.

gradients, i.e. the maximum distance between two gradients in the minibatch. The toy

example above showcases that the range can be arbitrarily smaller than the maximum norm

(Fig. 4.1). We want to emphasize that although the idea of using private estimation within

an optimization has been conceptually proposed in abstract settings, e.g., in [131], DP-PCA

is the first setting where (i) such separation between the norm and the range of the gradients

holds under any statistical model, and hence (ii) the long line of recent advances in private

estimation provides significant gain over the simple DP-SGD [1].

4.5 Differentially Private Principal Component Analysis (DP-PCA)

Combining the two ideas of minibatch SGD and private mean estimation, we propose

DP-SGD. We use minibatch SGD of minibatch size B = O(n/ log2 n) to allow for larger

range of ε = O(1). We use Private Mean Estimation to add an appropriate level of noise

chosen adaptively according to Private Eigenvalue Estimation. We describe details of both

sub-routines in Section 4.6.

We show an upper bound on the error achieved by DP-PCA under an appropriate choice

of the learning rate. We provide a complete proof in Appendix C.5.1 that includes the explicit

choice of the learning rate ηt in Eq. (C.52), and a proof sketch is provided in Section 4.6.1.

Theorem 4.5.1. For ε ∈ (0, 0.9), DP-PCA guarantees (ε, δ)-DP for all S, B, ζ, and δ. Given
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Algorithm 12: Differentially Private Principal Component Analysis (DP-PCA)

Input: S = {Ai}ni=1, (ε, δ), batch size B ∈ Z+, learning rates {ηt}⌊n/B⌋
t=1 , probability

ζ ∈ (0, 1)

1 Choose w0 uniformly at random from the unit sphere

2 for t = 1, 2, . . . , T = ⌊n/B⌋ do

3 Run Private Top Eigenvalue Estimation (Algorithm 21) with (ε/2, δ/2)-DP and

failure probability ζ/(2T ) on {AB(t−1)+iwt−1}⌊B/2⌋
i=1 . Let the returned estimation

be Λ̂t > 0.

4 Run Private Mean Estimation (Algorithm 22) with (ε/2, δ/2)-DP, failure

probability ζ/(2T ), and the estimated eigenvalue 2Λ̂t on{
AB(t−1)+⌊B/2⌋+iwt−1

}
i∈⌊B/2⌋. Let the returned mean gradient estimate be

ĝt ∈ Rd.

5 w′
t ← wt−1 + ηtĝt , wt ← w′

t/∥w′
t∥

6 Return wT

n i.i.d. samples {Ai ∈ Rd×d}ni=1 satisfying Assumption 5 with parameters (Σ,M, V,K, κ, a, γ2),

if

n = Õ
(
eκ

2

+
d1/2(log(1/δ))3/2

ε
+ κM + κ2V +

d κ γ (log(1/δ))1/2

ε
+
d log(1/δ)

ε

)
, (4.9)

with a large enough constant and δ ≤ 1/n, then there exists a positive universal constant

c1 and a choice of learning rate ηt that depends on (t,M , V , K, a, λ1, λ1 − λ2, n, d, ε,

δ) such that T = ⌊n/B⌋ steps of DP-PCA in Algorithm 12 with choices of ζ = 0.01 and

B = c1n/(log n)
2, outputs wT such that with probability 0.99,

sin (wT , v1) = Õ

(
κ
(√V

n
+
γd
√

log(1/δ)

εn

))
, (4.10)

where Õ(·) hides poly-logarithmic factors in n, d, 1/ε, and log(1/δ) and polynomial factors

in K.

We further interpret this analysis and show that (i) DP-PCA is nearly optimal when the

data is from a Gaussian distribution by comparing against a lower bound (Theorem 4.5.3);
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and (ii) DP-PCA significantly improves upon the private Oja’s algorithm under Example 4.4.1.

We discuss the necessity of some of the assumptions at the end of this section, including how

to agnostically find the appropriate learning rate scheduling.

Near-optimality of DP-PCA under Gaussian distributions. Consider the case of

i.i.d. samples {xi}ni=1 from a Gaussian distribution from Remark 4.3.4.

Corollary 4.5.2 (Upper bound; Gaussian distribution). Under the hypotheses of Theo-

rem 4.5.1 and {Ai = xix
⊤
i }ni=1 with Gaussian random vectors xi’s, after T = n/B steps,

DP-PCA outputs wT that achieves, with probability 0.99,

sin(wT , v1) = Õ

(
κ

(√
d

n
+
d
√
log(1/δ)

εn

))
. (4.11)

We prove a nearly matching lower bound, up to factors of
√
λ1/λ2 and

√
log(1/δ). One

caveat is that the lower bound assumes pure-DP with δ = 0. We do not yet have a lower

bound technique for approximate DP that is tight, and all known approximate DP lower

bounds have gaps to achievable upper bounds in its dependence in log(1/δ), e.g., [25, 161].

We provide a proof in Appendix C.3.1.

Theorem 4.5.3 (Lower bound; Gaussian distribution). Let Mε be a class of (ε, 0)-DP

estimators that map n i.i.d. samples to an estimate v̂ ∈ Rd. A set of Gaussian distributions

with (λ1, λ2) as the first and second eigenvalues of the covariance matrix is denoted by P(λ1,λ2).

For d>c where c > 0 is some absolute constant, there exists a universal constant C > 0 such

that

inf
v̂∈Mε

sup
P∈P(λ1,λ2)

ES∼Pn [sin(v̂(S), v1)] ≥ Cmin

(
κ

(√
d

n
+

d

εn

)√
λ2
λ1
, 1

)
. (4.12)

Comparisons with private Oja’s algorithm. We demonstrate that DP-PCA can signifi-

cantly improve upon Private Oja’s Algorithm with Example 4.4.1, where DP-PCA achieves

an error bound of sin(wT , v1) = Õ
(
σ
√
d/n + σd

√
log(1/δ)/(εn)

)
. As the noise power σ2

decreases DP-PCA achieves a vanishing error, whereas Private Oja’s Algorithm has a non-

vanishing error in Eq. (4.8). This follows from the fact that the second term in the error
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bound in Eq. (4.10) scales as γ, which can be made arbitrarily smaller than the second term in

Eq. (4.5) that scales as (γ+1). Further, the error bound for DP-PCA holds for any ε = O(1),

whereas Private Oja’s Algorithm requires significantly smaller ε = O(
√

log(n/δ)/n).

Remarks on the assumptions of Theorem 4.5.1. We have an exponential dependence of

the sample complexity in the spectral gap, n ≥ exp(κ2). This ensures we have a large enough

T = ⌊n/B⌋ to reduce the non-dominant second term in Eq. (4.2), in balancing the learning rate

ηt and T (which is explicitly shown in Eqs. C.54 and (C.55) in the Appendix). It is possible to

get rid of this exponential dependence at the cost of an extra term of Õ(κ4γ2d2 log(1/δ)/(εn)2)

in the error rate in Eq. (4.10), by selecting a slightly larger T = cκ2 log2 n. A Gaussian-

like tail bound in Assumption A.4 is necessary to get the desired upper bound scaling as

Õ(d
√

log(1/δ)/(εn)) in Eq. 4.11, for example. The next lower bound shows that without

such assumptions on the tail, the error due to privacy scales as Ω(
√
d ∧ log(1/δ)/(εn)). We

believe that the dependence in δ is loose, and it might be possible to get a tighter lower

bound using [132]. We provide a proof and other lower bounds in Appendix B.3.

Theorem 4.5.4 (Lower bound without Assumption A.4). Let Mε be a class of (ε, δ)-DP

estimators that map n i.i.d. samples to an estimate v̂ ∈ Rd. A set of distributions satisfying

Assumptions A.1–A.3 with M = Õ(d+
√
nε/d), V = O(d) and γ = O(1) is denoted by P̃.

For d ≥ 2, there exists a universal constant C > 0 such that

inf
v̂∈Mε

sup
P∈P̃

ES∼Pn [sin(v̂(S), v1)] ≥ Cκmin

(√
d ∧ log ((1− e−ε) /δ)

εn
, 1

)
. (4.13)

Currently, DP-PCA requires choices of the learning rates, ηt, that depend on possibly

unknown quantities. Since we can privately evaluate the quality of our solution, one can

instead run multiple instances of DP-PCA with varying ηt = c1/(c2 + t) and find the

best choice of c1 > 0 and c2 > 0. Let wT (c1, c2) denote the resulting solution for one

instance of {ηt = c1/(c2 + t)}Tt=1. We first set a target error ζ. For each round i =

1, . . ., we will run algorithm for (c1, c2) = [2i−1, 2−i+1]× [2−i+1, 2−i+2 . . . , 2i−1] and (c1, c2) =

[2−i+1, 2−i+2 . . . , 2i−1]× [2i−1, 2−i+1], and compute each sin(wT (c1, c2), v1) privately, each with
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privacy budget εi = ε
2i+1(2i−1)

, δi =
δ

2i+1(2i−1)
. We terminate the algorithm once there there

is a wT (c1, c2) satisfies sin(wT (c1, c2), v1) ≤ ζ. It is clear that this search meta-algorithm

terminate in logarithmic round, and the total sample complexity only blows up by a poly-log

factor.

4.6 Private mean estimation for the minibatch stochastic gradients

DP-PCA critically relies on private mean estimation to reduce variance of the noise required

to achieve (ε, δ)-DP. We follow a common recipe from [140, 130, 135, 32, 54]. First, we

privately find an approximate range of the gradients in the minibatch (Alg. 21). Next, we

apply the Gaussian mechanism to the truncated gradients where the truncation is tailored to

the estimated range (Alg. 22).

Step 1: estimating the range. We need to find an approximate range of the minibatch of

gradients in order to adaptively truncate the gradients and bound the sensitivity. Inspired by

a private preconditioning mechanism designed for mean estimation with unknown covariance

from [133], we propose to use privately estimated top eigenvalue of the covariance matrix

of the gradients. For details on the version of the histogram learner we use in Alg. 21 in

Appendix C.5.2, we refer to [160, Lemma D.1]. Unlike the private preconditioning of [133]

that estimates all eigenvalues and requires n = Õ(d3/2 log(1/δ)/ε) samples, we only require

the top eigenvalue and hence the next theorem shows that we only need n = Õ(d log(1/δ)/ε).

Theorem 4.6.1. Algorithm 21 is (ε, δ)-DP. Let gi = Aiu for some fixed vector u, where Ai

satisfies A.1 and A.4 in Assumption 5 such that the mean is E[gi] = Σu and the covariance

is E[(gi − Σu)(gi − Σu)⊤] = λ21Hu. With a large enough sample size scaling as

B = O

(
K2 d log(d log(1/(δζ))/(ζε)) log2a(Bd/ζ) log(1/(ζδ))

ε

)
= Õ

(
K2 d log(1/δ)

ε

)
,

Algorithm 21 outputs Λ̂ achieving Λ̂ ∈
[
(1/
√
2)λ21∥Hu∥2,

√
2λ21∥Hu∥2

]
with probability 1− ζ,

where the pair (K > 0, a > 0) parametrizes the tail of the distribution in A.4 and Õ(·) hides

logarithmic factors in B, d, 1/ζ, log(1/δ), and ε.
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We provide a proof in Appendix C.5.2. There are other ways to privately estimate the

range. Some approaches require known bounds such as σ2
min ≤ λ21(Hu)ii ≤ σ2

max for all i ∈ [d]

[140], and other agnostic approaches are more involved such as instance optimal universal

estimators of [72].

Step 2: Gaussian mechanism for mean estimation. Once we have a good estimate of

the top eigenvalue from the previous section, we use it to select the bin size of the private

histogram and compute the truncated empirical mean. Since truncated empirical mean has a

bounded sensitivity, we can use Gaussian mechanism to achieve DP. The algorithm is now

standard in DP mean estimation, e.g., [140, 130]. However, the analysis is slightly different

since our assumptions on gi’s are different. For completeness, we provide the Algorithm 22 in

Appendix C.5.3.

The next lemma shows that the Private Mean Estimation is (ε, δ)-DP, and with high

probability clipping does not apply to any of the gradients. The returned private mean,

therefore, is distributed as a spherical Gaussian centered at the empirical mean of the gradients.

This result requires that we have a good estimate of the top eigenvalue from Alg. 21 such

that Λ̂ ≃ λ21∥Hu∥2. This analysis implies that we get an unbiased estimate of the gradient

mean (which is critical in the analysis) with noise scaling as Õ(λ1γ
√
d log(1/δ)/(εB)), where

γ2 = maxu:∥u∥=1 ∥Hu∥2 (which is critical in getting the tight sample complexity in the second

term of the final utility guarantee in Eq. (4.10)). We provide a proof in Appendix C.5.3.

Lemma 4.6.2. For ε ∈ (0, 0.9) and any δ ∈ (0, 1), Algorithm 22 is (ε, δ)-DP. Let gi =

Aiu for some fixed vector u, where Ai satisfies A.1 and A.4 in Assumption 5 such that

the mean is E[gi] = Σu and the covariance is E[(gi − Σu)(gi − Σu)⊤] = λ21Hu. If Λ̂ ∈

[λ21∥Hu∥2/
√
2,
√
2λ21∥Hu∥2], δ ≤ 1/B, and B = Ω((

√
d log(1/δ)/ε) log(d/(ζδ))) then, with

probability 1− ζ, gi ∈ ḡ +
[
−3K

√
Λ̂ loga(Bd/ζ), 3K

√
Λ̂ loga(Bd/ζ)

]d
for all i ∈ [B].
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4.6.1 Proof sketch of Theorem 4.5.1

We choose B = Θ(n/ log2 n) such that we access the dataset only T = Θ(log2 n) times. Hence

we do not need to rely on amplification by shuffling. To add Gaussian noise that scales as the

standard deviation of the gradients in each minibatch (as opposed to potentially excessively

large mean of the gradients), DP-PCA adopts techniques from recent advances in private

mean estimation. Namely, we first get a private and accurate estimate of the range from

Theorem 4.6.1. Using this estimate, Λ̂, Private Mean Estimation returns an unbiased estimate

of the empirical mean of the gradients, as long as no truncation has been applied as ensured

by Lemma 4.6.2. This gives

w′
t ← wt−1 + ηt

(
1

B

B∑
i=1

AB(t−1)+iwt−1 + βtzt

)
, (4.14)

for zt ∼ N (0, I) and βt =
8K
√

2Λ̂t log
a(Bd/ζ)

√
2d log(2.5/δ)

εB
. Using rotation invariance of spherical

Gaussian random vectors and the fact that ∥wt−1∥ = 1, we can reformulate it as

w′
t ← wt−1 + ηt

(
1

B

B∑
i=1

AB(t−1)+i + βtGt

)
︸ ︷︷ ︸

Ãt

wt−1 . (4.15)

This process can be analyzed with Theorem 4.2.2 with Ãt substituting At.

4.7 Discussion

Under the canonical task of computing the principal component from i.i.d. samples, we show

the first result achieving an optimal error rate. This critically relies on two ideas: minibatch

SGD and private mean estimation. In particular, private mean estimation plays a critical role

in the case when the range of the gradients is significantly smaller than the norm; we achieve

an optimal error rate that cannot be achieved with the standard recipe of gradient clipping.

Assumption A.4 can be relaxed to heavy-tail bounds with bounded k-th moment on Ai,

in which case we expect the second term in Eq. (4.10) to scale as O(d(
√
log(1/δ)/εn)1−1/k),

drawing analogy from a similar trend in a computationally inefficient DP-PCA without
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spectral gap [161, Corollary 6.10]. When a fraction of data is corrupted, recent advances in

[212, 145, 121] provide optimal algorithms for PCA. However, existing approach of [161] for

robust and private PCA is computationally intractable. Borrowing ideas from robust and

private mean estimation in [160], one can design an efficient algorithm, but at the cost of

sub-optimal sample complexity. It is an interesting direction to design an optimal and robust

version of DP-PCA. Our lower bounds are loose in its dependence in log(1/δ). Recently, a

promising lower bound technique has been introduced in [132] that might close this gap.

There are two ways to extend our framework to general rank-r PCA, whose analyses

are promising research directions. First, applying Hotelling’s deflation method [111], we can

iteratively find the PCA components one by one, by alternating our DP-PCA and deflation.

For example, in one step of the iteration, we only update the current iterate vector in the

directions orthogonal to all the previously found PCA components. Repeating this steps

gives the estimates of the top principal components. Secondly, we can directly apply Oja’s

algorithm. We keep track of a r-dimensional subspace in the Oja’s update rule for PCA, and

perform QR decomposition to keep the iterates on the Grassmannian manifold. It might be

possible to extend the analysis of [113] to analyze the private version.
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Chapter 5

LABEL-ROBUST DIFFERENTIALLY PRIVATE LINEAR
REGRESSION

5.1 Introduction

Differential Privacy (DP) [78] is a standard notion of privacy widely adopted by both industry

and government [189, 82, 84, 2]. With widespread usage of ML and statistical techniques,

DP becomes even more critical to ensure private information of participating individuals

is not revealed in any form via the learned model. An statistical estimator is said to be

(ε, δ)-differentially private if presence/absence of an individual’s data point in the dataset does

not significantly change the estimated output. Smaller ε > 0 and δ ∈ [0, 1] imply stronger

privacy guarantees.

While privacy preserving statistical estimators have been studied extensively in recent past,

several critical questions remain open (see App. D.1 for a survey). Consider the canonical

statistical task of linear regression with n i.i.d. samples, {(xi ∈ Rd, yi ∈ R)}ni=1, drawn from

xi ∼ N (0,Σ), yi = x⊤i w
∗+zi, zi ∼ N (0, σ2) and E[xizi] = 0 for some true parameter w∗ ∈ Rd.

The error is measured in (1/σ)∥ŵ − w∗∥Σ := (1/σ)∥Σ1/2(ŵ − w∗)∥, which correctly accounts

for the signal-to-noise ratio in each direction; in the direction of large eigenvalue of Σ, we

have larger signal in xi but the noise zi remains the same. We expect smaller errors in those

directions, which is accounted for in the error measure (1/σ)∥ŵ − w∗∥Σ.

Minimax optimal sample complexity for estimating the optimal linear regression model

with DP was recently established. For the lower bound, using recently introduced score

attack technique, [41, Theorem 3.1] shows that n = Ω(d/α2 + d/(εα)) samples are necessary

to achieve an error of (1/σ)∥ŵ − w∗∥Σ = α (in expectation). For the matching upper

bound, High-dimensional Propose-Test-Release (HPTR) in [161] and Robust-to-Private in
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[17] show that n = Õ(d/α2 + d/(εα)) samples are also sufficient. The first term of d/α2 is

the fundamental sample complexity even if privacy is not required, and the second term of

d/(εα) is the cost of privacy.

This implies that, statistically, the problem appears to be solved. However, computation-

ally, the problem is still open despite multiple studies of the problem. That is, the statistical

optimal algorithms still take exponential time.

After a series of efforts in computationally efficient approaches as surveyed in App. D.1,

[199] achieves the best known sample complexity of n = Õ(d/α2 + κd/(εα) + κ2d/ε), where

κ is the condition number of the covariance Σ of the covariates. Compared to HPTR, the

cost of computational efficiency is factor of κ in the second term and the third term that is

unnecessary. As the condition number can be quite large, improving the dependence on κ is

of utmost importance. Furthermore, the technique of [199] strictly requires sampling without

replacement, whose analysis relies on having an explicit form of the end-to-end update. In

particular, their analysis technique is not applicable to the case with corrupted samples.

In contrast, we propose a novel method (Alg. 13) that builds upon full-batch gradient

descent and applies a carefully chosen adaptive clipping which is a general technique used in

practice as well [1]. Together with an intuitive but intricate analysis technique, we improve

the sample complexity to n = Õ(d/α2 + κ1/2d/(εα)).

Corollary 5.1.1 (Corollary of Thm. 5.3.1 for sub-Gaussian data). Alg. 13 is (ε, δ)-DP.

Let S = {(xi, yi)}ni=1 be a dataset of i.i.d. samples with xi ∼ N (0,Σ), yi = x⊤i w
∗ + zi

and zi ∼ N (0, σ2) for some unknown true parameter w∗ = Σ−1E[yixi] ∈ Rd and unknown

Σ and σ2. Then n = Õ(d/α2 + κ1/2d/(εα)) samples are sufficient for Alg. 13 to achieve

(1/σ)∥ŵ − w∗∥Σ = Õ(α) with high probability, where κ := λmax(Σ)/λmin(Σ).

Due to space constraints, we focus on sub-Gaussian distributions in the main text and

provide comparisons to prior work in Tab. 5.1. Our analysis in App. D.8 applies to a more

general family of light-tailed distributions, called sub-Weibull. Next, when the noise in the

samples is heavy-tailed, a similar algorithm can be applied with carefully chosen clipping



151

Table 5.1: Suppose data is drawn from a linear model in d-dimensions from sub-Gaussian

covariates with covariance Σ and sub-Gaussian noise with variance σ2. To achieve an error

rate of (1/σ)∥ŵ − w∗∥Σ = α with (ε, δ)-DP, DP-RobGD requires the least number of samples

among computationally efficient algorithms. This improves over [199] by a factor of κ1/2 in

the second term, where κ is the condition number of Σ. We hide polylogarithmic factors in d,

κ and 1/δ. ♠DP-Theil-Sen is only analyzed when κ = 1 and its dependence κc is unknown.

Algorithm Runtime Sample Complexity

TukeyEM [11] poly no guarantee

DP-Theil-Sen [187] ♠ poly d2

α2 +
d
εα
κc

DP-AMBSSGD [199] poly d
α2 +

d
εα
κ+ κ2d

ε

DP-RobGD [Theorem 5.3.7] poly d
α2 +

d
εα
κ1/2

HPTR [161], Robust-to-private [17] exp d
α2 +

d
εα

Lower Bound [41] d
α2 +

d
εα

thresholds to account for the heavier tail. Concretely, for k-th moment bounded distributions,

the tail of the distribution gets increasingly heavier with smaller k. This would require larger

number of samples to achieve the same accuracy, which is captured in our sample complexity

of n = Õ(d/α2k/(k−1) + κ1/2d/(εαk/(k−1))). We explain the heavy-tailed setting, provide a

detailed analysis and a proof, and discuss the results in App. D.12. This is the first efficient

algorithm with provable guarantees achieving (ε, δ)-DP.

Corollary 5.1.2 (informal version of Coro. D.12.5 for heavy-tailed noise). Alg. 25 is (ε, δ)-DP.

Let S = {(xi, yi)}ni=1 be a dataset of i.i.d. samples with xi ∼ N (0,Σ), yi = x⊤i w
∗ + zi, and the

zero-mean, independent, and heavy-tailed noise zi satisfies E[|z/σ|k] = O(1) for some unknown

true parameter w∗ ∈ Rd and unknown Σ and σ2. Then n = Õ(d/α2k/(k−1)+κ1/2d/(εαk/(k−1)))

samples are sufficient for Alg. 25 in App. D.12 to achieve an error rate of (1/σ)∥ŵ−w∗∥Σ =

Õ(α) with high probability, where κ := λmax(Σ)/λmin(Σ).
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Perhaps surprisingly, we show that Alg. 13 is also robust against label-corruption, where

an adversary selects an arbitrary αcorrupt fraction of the data points and changes their response

variables arbitrarily. Ideally, we want a robust algorithm against a stronger adversary who

can corrupt the covariates also. However, even for a simpler problem of private mean

estimation, achieving robustness against such a strong adversary with O(d) samples requires

heavy machinery (convex relaxations of sum-of-squares optimization) with significantly more

computations (although polynomial) [109].

Our lower bound in Prop. 5.3.8, together with the lower bound in [41] on the uncorrupted

case, shows that n = Ω(d/α2 + d/(εα)) samples are necessary to achieve an error rate of

(1/σ)∥ŵ − w∗∥Σ = O(α+ αcorrupt). In particular, it is impossible to achieve an error below

αcorrupt even if we have infinite samples (Prop. 5.3.8), and hence there is no need to aim

for α < αcorrupt. This lower bound is matched by exponential time approaches, HPTR in

[161] and Robust-to-Private in [17], which also guarantee robustness. Currently, there is no

efficient algorithm that can guarantee both privacy and robustness for linear regression. To

this end, we provide the first efficient algorithm guaranteeing both, with a sample complexity

that is optimal up to a κ1/2 factor.

Corollary 5.1.3 (Corollary of Thm. D.8.2 for sub-Gaussian data with adversarial label

corruption). Under the hypotheses of Coro. 5.1.1, suppose αcorrupt-fraction of the labels are

corrupted arbitrarily. Then n = Õ(d/α2 + κ1/2d/(εα)) samples are sufficient for Alg. 13

to achieve an error rate of (1/σ)∥ŵ − w∗∥Σ = Õ(α + αcorrupt) with high probability, where

κ := λmax(Σ)/λmin(Σ).

When αcorrupt = 0, this recovers the non-robust result from Coro. 5.1.1. A similar

robustness guarantee also holds for heavy-tailed settings. We provide a formal statement in

App. D.12

Contributions. For a canonical problem of private linear regression under sub-Gaussian

distributions, the best known efficient algorithm [199] requires

n = Õ

(
d

α2
+
κd

εα
+
κ2d

ε

)
,
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to achieve (1/σ)∥ŵ−w∗∥Σ = α. We provide the first efficient algorithm that improves this to

n = Õ

(
d

α2
+
κ1/2d

εα

)
,

which nearly matches the exponential-time algorithms [161, 17] and the lower bound [41] up

to κ1/2 in the second term. For the same problem, we show that the same algorithm is the

first to achieve robustness against adversarial corruption of the labels.

Under a heavy-tailed distribution of the noise, we provide the first computationally efficient

algorithm, to the best of our knowledge, that achieves a sample complexity close to that of

an exponential-time algorithm of [161]. There is no matching lower bound in the heavy-tailed

setting. This is also the first efficient algorithm to achieve robustness against adversarial

corruption of the labels under heavy-tailed noise.

5.2 Problem formulation and background

When there is no adversary, we present our results under the standard linear model with

sub-Gaussian covariates and noise. In App. D.8, we present a more general family of (K, a)-

sub-Weibull distributions that recovers the standard sub-Gaussian family as a special case

when a = 0.5. The necessity of such assumptions on the tail is explained in Sec. 5.3.4.

Assumption 6 (sub-Gaussian model). We have i.i.d. samples S = {(xi ∈ Rd, yi ∈ R)}ni=1

from a distribution PΣ,w∗,σ2 of a linear model yi = ⟨xi, w∗⟩ + zi, where the input vector xi

has zero mean E[xi] = 0 and a positive definite covariance Σ := E[xix⊤i ] ≻ 0, and the (input

dependent) label noise zi has zero mean E[zi] = 0 and variance σ2 := E[z2i ]. We further

assume E[xizi] = 0, which is equivalent to assuming that the true parameter w∗ = Σ−1E[yixi].

We assume the marginal distributions of xi and zi are K-sub-Gaussian with K = O(1), as

defined below.

Definition 5.2.1. x ∈ Rd is K-sub-Gaussian if for all v ∈ Rd, E
[
exp

(
⟨v,x⟩2

K2E[⟨v,x⟩2]

)]
≤ 2.

Given a dataset S that is i.i.d. sampled from PΣ2,w∗,σ2 satisfying Asmp. 6, our goal is to

estimate w∗ that minimizes (1/σ)∥ŵ − w∗∥Σ which is also equivalent to minimize the excess

population risk, i.e., L(w∗)− L(ŵ) where L(w) := E(x,y)∼PΣ,w∗,σ2 [(y − ⟨w, x⟩)2].
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Notations. A vector x ∈ Rd has the Euclidean norm ∥x∥. For a matrix M , we use ∥M∥2 to

denote the spectral norm. The error is measured in ∥ŵ − w∗∥Σ := ∥Σ1/2(ŵ − w∗)∥ for some

PSD matrix Σ. The identity matrix is denoted by Id ∈ Rd×d. Let [n] = {1, 2, . . . , n}. Õ(·)

hides some constants terms, K = Θ(1), and poly-logarithmic terms in n, d, 1/ε, log(1/δ),

1/ζ, and 1/αcorrupt. For a vector x ∈ Rd, we define clipa(x) := x ·min{1, a/∥x∥}.

Background on DP. Differential Privacy is a standard measure of privacy leakage when data

is accessed via queries, introduced by [78]. Two datasets S and S ′ are said to be neighbors if

they differ at most by one entry, which is denoted by S ∼ S ′. A stochastic query q is said to be

(ε, δ)-differentially private for some ε > 0 and δ ∈ [0, 1], if P(q(S) ∈ A) ≤ eεP(q(S) ∈ A) + δ,

for all neighboring datasets S ∼ S ′ and all subset A of the range of the query. We build

upon two widely used DP primitives, the Gaussian mechanism and the private histogram.

A central concept in DP mechanism design is the sensitivity of a query, defined as ∆q :=

supS∼S′ ∥q(S)− q(S ′)∥. We describe Gaussian mechanism and private histogram in App. D.2.

5.2.1 Comparisons with the prior work

The state-of-the-art approach introduced by [199] is based on DP-SGD [182], where privacy

is ensured by gradient norm clipping and the Gaussian mechanism. Two additional technical

components are adaptive clipping and streaming SGD. Adaptive clipping with an appropriate

threshold θt ensures that no data point is clipped (under the sub-Gaussian assumption), while

providing a bound on the sensitivity of the average mini-batch gradient (to ensure we do not

add too much noise). The streaming approach, where each data point is only touched once

and discarded, ensures independence between the past iterate wt and the gradients at round

t+ 1, which the analysis critically relies on. For T = Θ̃(κ) iterations where κ is the condition

number of the covariance Σ, the dataset S = {(xi, yi)}ni=1 is partitioned into {Bt}T−1
t=0 subsets

of equal size: |Bt| = Θ̃(n/κ). At each round t, the gradients are clipped and averaged with

additive Gaussian noise chosen to satisfy (ε, δ)-DP:

wt+1 ← wt − η
( 1

|Bt|
∑
i∈Bt

clipθt(xi(w
⊤
t xi − yi)) +

θt
√
2 log(1.25/δ)

ε|Bt|
νt

)
, (5.1)
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where νt ∼ N (0, Id). In [199], a slight variation of this streaming SGD is shown to achieve

an error of (1/σ)∥wT − w∗∥Σ = α with n = Õ(d/α2 + κd/(εα) + κ2d/ε) samples (Row 3 in

Tab. 5.1).

Our technical innovations. Our approach builds upon such gradient based methods

but makes several important innovations. First, we use full-batch gradient descent, as opposed

to the streaming SGD above. Using all n samples reduces the sensitivity of the per-round

gradient average by a κ factor, and thus decreases the privacy noise added in each iteration.

This improves the second term of sample complexity from κd/(εα) to κ1/2d/(εα) and removes

the third term completely. However, full-batch GD loses the independence that the streaming

SGD enjoyed between wt and the samples used in the round t+ 1. This dependence makes

the analysis more challenging. We instead propose using the resilience to precisely track

the bias and variance of the (dependent) full-batch average gradient. Resilience is a central

concept in robust statistics that links the tail-property of the distribution to the bias, which

we explain in Sec. 5.5.

Next, one critical component in achieving this improved sample complexity is the new

analysis technique we introduce for tracking the end-to-end gradient updates. Since our

gradient descent algorithm is not guaranteed to make progress every step, we cannot use

the vanilla one-step analysis. Taking the full end-to-end analysis by expanding the whole

gradient trajectory will introduce too many correlated cross-terms which are very hard to

control. Therefore, we leverage an every κ-step analysis and show that the objective function

at least decreases geometrically every κ steps. To be more specific, our analysis technique

in App. D.8 (steps 3 and 4) opens up the iterative updates from the beginning to the end,

and exploits the fact that λmax((ηΣ)
1/2(1− ηΣ)i(ηΣ)1/2) is upper bounded by 1/(i+ 1) when

∥ηΣ∥ ≤ 1. This technique is critical in achieving the near-optimal dependence in κ. This

might be of independent interest to other analysis of gradient-based algorithms. We refer to

the beginning of step 3 in App. D.8 for a detailed explanation.

Finally, we propose a novel clipping that separately clips xi and (w⊤
t xi−yi) in the gradient,

(w⊤
t xi − yi)xi. This is critical in achieving robustness to label-corruption, as we explain in
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Sec. 5.3.1.

5.3 Label-robust and private linear regression

We introduce a novel gradient descent approach. This achieves an improved sample complexity

compared to the state-of-the-art algorithm and robustness against label corruption.

5.3.1 Algorithm

The skeleton of our approach in Alg. 13 is the general DP-SGD [1, 182] with adaptive clipping

[12]. We partition the dataset into three equal-sized subsets: S1, S2, S3. S1 and S2 are used

in adaptively estimating the clipping thresholds, and S3 is re-used every step to compute the

average gradient.

The standard adaptive clipping, e.g., [12, 199], is not robust against label-corruption.

Under sub-Gaussian distribution, a positive fraction of the covariates, xi’s, can be close to the

origin. If the adversary chooses to corrupt those points with small norm, ∥xi∥, they can make

large changes in the corrupted residual, (yi − w⊤
t xi), while evading the standard clipping by

the norm of the gradient; the norm of the gradient, ∥xi(yi − w⊤
t xi)∥ = ∥xi∥ |yi − w⊤

t xi|, can

remain under the threshold. This is problematic, since the bias due to the corrupted samples

in the gradient scales proportionally to the magnitude of the residual (after clipping). To this

end, we propose clipping the norm and the residual separately: clipΘ(xi)clipθt

(
w⊤

t xi − yi
)
.

This keeps the sensitivity of gradient average bounded by Θ(θt). The subsequent Gaussian

mechanism in line 11 ensures (ε0, δ0)-DP at each round. Applying advanced composition in

Lemma 2.3.4 of T rounds, this ensures end-to-end (ε, δ)-DP.

Novel adaptive clipping. When clipping with clipΘ(xi), the only purpose of clipping

the covariate by its norm, ∥xi∥, is to bound the sensitivity of the resulting clipped gradient.

In particular, we do not need to make it robust as there is no corruption in the covariates.

Ideally, we want to select the smallest threshold Θ that does not clip any of the covariates.

Since the norm of a covariate is upper bounded by ∥xi∥2 ≤ K2Tr(Σ) log(1/ζ) with probability

1 − ζ (Lemma D.10.3), we estimate the unknown Tr(Σ) using Private Norm Estimator in
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Alg. 24 in App. D.6 and set the norm threshold Θ = K
√

2Γ log(n/ζ) (Alg. 13 line 4). The n

in the logarithm ensures that the union bound holds.

When clipping with clipθt(w
⊤
t xi−yi), the purpose of clipping the residual by its magnitude,

|yi − w⊤
t xi| = |(w∗ − wt)

⊤xi + zi|, is to bound the sensitivity of the gradient and also to

provide robustness against label-corruption. We want to choose a threshold that only clips

corrupt data points and at most a few clean data points. In order to achieve an error

(1/σ)∥wT − w∗∥Σ = α, we know that any set of (1− α) fraction of the clean data points is

sufficient to get a good estimate of the average gradient. By clipping at |(w∗−wt)
⊤xi+ zi|2 ≤

(∥wt − w∗∥2Σ + σ2)CK2 log(1/(2α)), Lemma D.10.3 guarantees that the unclipped subset

will be large enough, i.e., (1 − α)n. At the same time, this threshold on the residual is

small enough to guarantee robustness against the label-corrupted samples. We introduce the

robust and DP Distance Estimator in Alg. 23 to estimate the unknown (squared and shifted)

distance, ∥wt − w∗∥2Σ + σ2, and set the distance threshold θt = 2
√
2γt
√
9C2K2 log(1/(2α))

(Alg. 13 line 7). Both norm and distance estimation rely on DP histogram (Lemma A.2.1),

but over a set of statistics computed on partitioned datasets, which we explain in detail in

App. D.3.

5.3.2 Analysis without adversarial corruption

We show that Alg. 13 achieves an improved sample complexity. We provide the proof for

a more general class of distributions in App. D.8 and a sketch of the proof in Sec. 5.5. We

address the necessity of the assumptions in Sec. 5.3.4, along with some lower bounds.

Theorem 5.3.1. Alg. 13 is (ε, δ)-DP. Under sub-Gaussian model of Asmp. 6, for any failure

probability ζ ∈ (0, 1) and target error rate α, if the sample size is large enough such that

n = Õ

K2d log2
(1
ζ

)
+
d+ log(1/ζ)

α2
+
K2dT 1/2 log(1

δ
)
√
log(1

ζ
)

εα

 , (5.2)

with a large enough constant, then the choices of a step size η = 1/(Cλmax(Σ)) for any

C ≥ 1.1 and the number of iterations, T = Θ̃ (κ log (∥w∗∥)) for a condition number of the



158

Algorithm 13: Robust and Private Linear Regression
Input: S = {(xi, yi)}3ni=1, DP parameters (ε, δ), T , learning rate η, failure probability

ζ, target error α, distribution parameter K

1 Partition dataset S into three equal sized disjoint subsets S = S1 ∪ S2 ∪ S3.

2 δ0 ← δ
2T

, ε0 ← ε

4
√

T log(1/δ0)
, ζ0 ← ζ

3
, w0 ← 0

3 Γ← PrivateNormEstimator(S1, ε0, δ0, ζ0) // using Alg. 24, App. D.6

4 Θ← K
√
2Γ loga(n/ζ0)

5 for t = 0, 1, 2, . . . , T − 1 do

6 γt ← PrivateDistanceEstimator(S2, wt, ε0, δ0, α, ζ0) // using Alg. 23,

App. D.3

7 θt ← 2
√
2γt ·

√
9C2K2 log(1/(2α)).

8 Sample νt ∼ N (0, Id)

9 g̃
(t)
i ← clipΘ(xi)clipθt(x

⊤
i wt − yi)

10 ϕt = (
√
2 log(1.25/δ0)Θθt)/(ε0n)

11 wt+1 ← wt − η
(

1
n

∑
i∈S3

g̃
(t)
i + ϕtνt

)
12 Return wT
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covariance κ := λmax(Σ)/λmin(Σ), ensures that, with probability 1− ζ, Alg. 13 achieves

Eν1,··· ,νT∼N (0,Id)

[
∥wT − w∗∥2Σ

]
= Õ

(
K4σ2α2 log2

( 1
α

))
, (5.3)

where the expectation is taken over the noise added for DP, and Õ and Θ̃(·) hide logarithmic

terms in K, σ, d, n, 1/ε, log(1/δ), 1/α, and κ.

Remark 5.3.2. Omitting some constant and logarithmic terms, Alg. 13 requires

n = Õ
( d

α2
+
κ1/2d

εα

)
, (5.4)

samples to ensure an error rate of (1/σ2)E[∥wT − w∗∥2Σ] = Õ(α2). From [41, Theorem

3.1], there exists an n = Ω(d/α2 + d/(εα)) lower bound, and our upper bound matches

this lower bound up to a factor of κ1/2 in the second term and other logarithmic factors.

(5.4) is the best known rate among all efficient private linear regression algorithms, strictly

improving upon the state-of-the-art. The best existing efficient algorithm by [199] requires

n = Õ(d/α2+κd/(εα)+κ2d/ε) to achieve the same error rate. Compared to (5.4), the second

term is larger by a factor of κ1/2 compared to the second term in (5.4). Further, [199] requires

κ2d/ε, which is not needed in (5.4).

Remark 5.3.3. Consider the standard settings of linear regression with xi ∼ N (0, Id) and

zi ∼ N (0, σ2) such that the condition number is one, our bound given by Eq (5.4) nearly

matches the lower bound ([41, Theorem 3.1]) up to logarithmic factors.

Remark 5.3.4. Note that the leading term in Eq (5.4) is the first term d/α2 when target

error α ≤ ε/κ1/2. Our first term is independent of κ, which matches the lower bound for

non-private linear regression.

Remark 5.3.5. The third term κ2d/ε in [199] is independent of error rate α but scales as

κ2. This term is required to ensure the privacy noise added in each iteration is small enough

for their DP-SGD to make progress (Appendix. B.2.2 in [199]). Our algorithm is based

on full-batch gradient descent, which uses all n samples and thus reduces the sensitivity of
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gradient average by a κ factor. As a result, we show in (D.51) that our algorithm only requires

n = Õ((1/ε)
√
κ1/2d/α) to make progress for each iteration. This is strictly smaller than our

dominant term κ1/2d/(εα) and does not show up in our final guarantee. We provide a formal

proof in App. D.8.

Remark 5.3.6. One of the key innovations in Alg. 13 is the adaptive distance estimator

(Alg. 23 in App. D.3). The goal is to privately estimate the (shifted) distance of the current

estimate, i.e., ∥wt−w∗∥Σ+σ2, without the knowledge of w∗. We show in Thm. D.3.1 that our

novel distance estimator only requires an error-independent sample complexity n = Õ(κ1/2d/ε)

to achieve a constant multiplicative error. Note that the DP-STAT (Algorithm 3 in [199]) can

also be used to estimate the distance. But it requires the knowledge of domain size ∥w∗∥Σ + σ.

We completely remove this requirement, improve the dependence on K and log(n), and show

it is also robust, as introduced in the next section. We provide the algorithms and analysis in

App. D.3 and the formal proof in App. D.4.

5.3.3 Robustness against label corruption

We assume there exists a good dataset Sgood that satisfies Asmp. 6. We only get access to a

label-corrupted dataset under the standard definition of label corruption, e.g., [31]. There are

variations in literature on the definition, which we survey in App. D.1.

Assumption 7 (αcorrupt-corruption). Given a dataset Sgood = {(xi, yi)}ni=1, an adversary

inspects all the data points, selects αcorruptn data points denoted as Sr, and replaces the labels

with arbitrary labels while keeping the covariates unchanged. We let Sbad denote this set

of αcorruptn newly labelled examples by the adversary. Let the resulting set be Scorrupt :=

Sgood ∪ Sbad \ Sr.

Our goal is to estimate the unknown parameter w∗, given corrupted dataset Scorrupt,

distribution parameter K, and (an upper bound on) the corruption level αcorrupt.

Under the non-private scenario, i.e., ε =∞, recent advances led to optimal algorithms

for linear regression that are robust to label corruptions [31, 55]; if the corruption level is
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smaller than the target error rate, i.e., αcorrupt ≤ α, then n = Õ(d/α2) samples are sufficient

to achieve an error rate of (1/σ)∥ŵ − w∗∥Σ = α. The sample complexity of d/α2 is optimal

as it matches the information theoretic lower bound. The condition αcorrupt ≤ α is necessary

since it is information theoretically impossible to achieve error α less than αcorrupt, as we

prove in Prop. 5.3.8. Setting the target error to the minimum possible value of α = αcorrupt,

we say that these algorithms achieve optimal robustness since the minimum robust error

rate of (1/σ)∥ŵ − w∗∥Σ = O(αcorrupt) can be achieved with minimal sample complexity of

n = Õ(d/α2
corrupt). We aim to achieve such optimal robustness simultaneously with differential

privacy in a computationally efficient manner.

Theorem 5.3.7. Under sub-Gaussian model of Asmp. 6 and αcorrupt-corruption of Asmp. 7, if

the corruption level is below the target error rate, α ≥ αcorrupt, then n = Õ(d/α2+κ1/2d/(εα))

samples are sufficient for Alg. 13 to achieve an error rate of (1/σ2)E[∥ŵ − w∗∥2Σ] = Õ(α2).

This is the first efficient approach to achieve robustness and (ε, δ)-DP simultaneously.

The existing such algorithms take exponential time [161, Corollary C.2] and [17], but achieve

optimal sample complexity of n = O(d/α2 + d/(εα)). Notice that there is no dependence on

κ. It remains an open question if computationally efficient private linear regression algorithms

can achieve such an optimal κ-independent sample complexity. We make the first advance

towards this ambitious goal with the above theorem. Our sample complexity is sub-optimal

only by a factor of
√
κ in the second term. This is achieved by individually clipping the

covariate, xi, and the residual, (w⊤
t xi − yi), in Alg. 13 and carefully tracking the bias of

clipping with the use of resilience in the analysis in App. D.8.

5.3.4 Lower bounds

Necessity of our assumptions. A tail assumption on the covariate xi such as Asmp. 6

is necessary to achieve n = O(d) sample complexity in (5.4). Even when the covariance Σ

is close to identity, without further assumptions on the tail of covariate x, the result in [27]

implies that for δ < 1/n, it is necessary for an (ε, δ)-DP estimator to have n = Ω(d3/2/(εα))
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samples to achieve ∥ŵ − w∗∥Σ = Õ(α) (see Eq. (3) in [206]). Note that this lower bound is a

factor d1/2 larger than our upper bound that benefits from the additional tail assumption.

A tail assumption on the noise zi such as Asmp. 6 is necessary to achieve n = O(d/(εα))

dependence on the sample complexity in (5.4). For heavy-tailed noise, such as k-th moment

bounded noise, the dependence can be significantly larger. [161, Proposition C.5] implies

that for δ = e−Θ(d) and 4-th moment bounded xi and zi, any (ε, δ)-DP estimator requires

n = Ω(d/(εα2)), which is a factor of 1/α larger, to achieve (1/σ2)∥ŵ − w∗∥Σ = Õ(α).

The assumption that only labels are corrupted is critical for Alg. 13. The average of the

clipped gradients can be significantly more biased, if the adversary can place the covariates

of the corrupted samples in the same direction. In particular, the bound on the bias of our

gradient step in (D.36) in App. D.8 would no longer hold. Against such strong attacks, one

requires additional steps to estimate the mean of the gradients robustly and privately, similar

to those used in robust private mean estimation [160, 146, 108, 15]. There is no known

linear-time algorithm to achieve this, and this is outside the scope of this work.

Lower bounds under label corruption. Under the αcorrupt label corruption setting

(Asmp. 7), even with infinite data and without privacy constraints, no algorithm is able to

learn w∗ with ℓ2 error better than αcorrupt. We provide a formal derivation for completeness.

Proposition 5.3.8. Let DΣ,σ2,w∗,K be a class of distributions on (xi, yi) from sub-Gaussian

model in Asmp. 6. Let Sn,α be an α-corrupted dataset of n i.i.d. samples from some distribution

D ∈ DΣ,σ2,w∗,K under Asmp. 7. Let M be a class of estimators that are functions over Sn,α.

Then there exists a constant c such that minn,ŵ∈M maxSn,α,D∈DΣ,σ2,w∗,K ,w∗,K E[∥ŵ−w∗∥2Σ] ≥

c α2 σ2.

A proof is provided in App. D.9.1. A similar lower bound can be found in [22, Theorem

6.1].
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Figure 5.1: Performance of various techniques on DP linear regression. d = 10 in all the

experiments. n = 107, κ = 1 in the 2nd experiment. n = 107, σ = 1 in the 3rd experiment,

where κ is the condition number of Σ and σ2 is the variance of the label noise zi.

5.4 Experimental results

5.4.1 DP Linear Regression

We present experimental results comparing our proposed technique (DP-RobGD) with other

baselines. We consider non-corrupted regression in this section and defer corrupted regression

to the App. D.11. We begin by describing the problem setup and the baseline algorithms

first.

Experiment Setup. We generate data for all the experiments using the following generative

model. The parameter vector w∗ is uniformly sampled from the surface of a unit sphere. The

covariates {xi}ni=1 are first sampled from N (0,Σ) and then projected to unit sphere. We

consider diagonal covariances Σ of the following form: Σ[0, 0] = κ, and Σ[i, i] = 1 for all i ≥ 1.

Here κ ≥ 1 is the condition number of Σ. We generate noise zi from uniform distribution

over [−σ, σ]. Finally, the response variables are generated as follows yi = x⊤i w
∗ + zi. All the

experiments presented below are repeated 5 times and the averaged results are presented.

We set the DP parameters (ϵ, δ) as ϵ = 1, δ = min(10−6, n−2). Experiments for ϵ = 0.1 can be

found in Fig. D.1 in the App. D.11.

Baseline Algorithms. We compare our estimator with the following baseline algorithms:

• Non private algorithms: ordinary least squares (βols), one-pass stochastic gradient descent

with tail-averaging (SGD). For SGD, step-size is 1/(2λmax) and minibatch size is n/T ,
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where T = 3κ log n.

• Private algorithms: sufficient statistics perturbation (DP-SSP) [88, 206], differentially

private stochastic gradient descent (DP-AMBSSGD) [199]. DP-SSP had the best

empirical performance among numerous techniques studied by [206], and DP-AMBSSGD

has the best known theoretical guarantees. The DP-SSP algorithm involves releasing

XTX and XTy differentially privately and computing (X̂TX)−1X̂Ty. DP-AMBSSGD

is a private version of SGD where the DP noise is set adaptively according to the excess

error in each iteration. For both algorithms, we use the hyper-parameters recommended

in their respective papers. To improve the performance of DP-AMBSSGD, we reduce

the theoretical clipping threshold by a constant factor.

DP-RobGD. We implement Alg. 13 with the following key changes. Instead of relying

on PrivateNormEstimator to estimate Γ, we set it to its true value Tr(Σ). This is done for

a fair comparison with DP-AMBSSGD which assumes the knowledge of Tr(Σ). Next, we

use 20% of the samples to compute γt in line 5 (instead of the 50% stated in Alg. 13). In

our experiments we also present results for a variant of our algorithm called DP-RobGD*

which outputs the best iterate based on γt, instead of the last iterate. One could also perform

tail-averaging instead of picking the best iterate. Both these modifications are primarily

used to reduce the variance in the output of Alg. 13 and achieved similar performance in our

experiments.

Results. Figure 5.1 presents the performance of various algorithms as we vary n, κ, σ. It

can be seen that DP-RobGD outperforms DP-AMBSSGD in almost all the settings (and

DP-RobGD* outperforms DP-RobGD in all cases). DP-SSP has poor performance when

the noise σ is low, but performs slightly better than DP-RobGD in other settings. A major

drawback of DP-SSP is its computational complexity which scales as O(nd2+dω). In contrast,

the computational complexity of DP-RobGD has smaller dependence on d and scales as

Õ(ndκ). Thus the latter is more computationally efficient for high-dimensional problems.

More experimental results on both robust and private linear regression can be found in the
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App. D.11.

5.5 Sketch of the main ideas in the analysis

We provide the main ideas behind the proof of Thm. 5.3.1. The privacy proof is straightforward

since no matter what clipping threshold we use the noise we add is always proportionally to

the clipping threshold which guarantees privacy. In the remainder, we focus on the utility

analysis.

The proof of the utility heavily relies on the resilience [185] (also known as stability [67]),

which states that given a large enough sample set S, various statistics (for example, sample

mean and sample variance) of any large enough subset of S will be close to each other. We

define resilience as follows.

Definition 5.5.1 ([161, Definition 23]). For some α ∈ (0, 1), ρ1 ∈ R+, ρ2 ∈ R+, and ρ3 ∈ R+,

ρ4 ∈ R+, we say dataset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 is (α, ρ1, ρ2, ρ3, ρ4)-resilient with

respect to (w∗,Σ, σ) for some w∗ ∈ Rd, positive definite Σ ≻ 0 ∈ Rd×d, and σ > 0 if for any

T ⊂ Sgood of size |T | ≥ (1− α)n, the following holds for all v ∈ Rd:

∣∣∣ 1|T | ∑
(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i w∗)
∣∣∣ ≤ ρ1

√
v⊤Σv σ , (5.5)

∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩2 − v⊤Σv
∣∣∣ ≤ ρ2v

⊤Σv , (5.6)

∣∣∣ 1|T | ∑
(xi,yi)∈T

(yi − x⊤i w∗)2 − σ2
∣∣∣ ≤ ρ3σ

2 , (5.7)

∣∣∣ 1|T | ∑
(xi,yi)∈T

⟨v, xi⟩
∣∣∣ ≤ ρ4

√
v⊤Σv . (5.8)

We give an overview of the proof for non-robust case as follows. First, we introduce some

notations. Let g(t)i := (x⊤i wt − yi)xi be the raw gradient and g̃(t)i := clipΘ(xi)clipθt(x
⊤
i wt − yi)

be the clipped gradient. Note that when the data follows from our distributional assumption,

with high probability, samples are not clipped by the norm: clipΘ(xi) = xi. We can write
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down one step of gradient update (see Alg. 13) as follows:

wt+1 − w∗ =

(
I− η

n

∑
i∈S

xix
⊤
i

)
(wt − w∗)︸ ︷︷ ︸

(i)

+
η

n

∑
i∈S

xizi︸ ︷︷ ︸
(ii)

+
η

n

∑
i∈S

(g
(t)
i − g̃

(t)
i )︸ ︷︷ ︸

(iii)

− ηϕtνt︸ ︷︷ ︸
(iv)

.

In the above equation, the first term is a contraction, meaning wt is moving toward w∗.

The second term captures the noise from the randomness in the samples. The third term

captures the bias introduced by the clipping operation, and the fourth term captures the

added noise for privacy. The second term is standard and relatively easy to control, and our

main focus is on the last two terms.

The third term (η/n)
∑

i∈S(g
(t)
i − g̃

(t)
i ) can be controlled using the resilience property. We

prove that with our estimated threshold, the clipping will only affect a small amount of

datapoints, whose contribution to the gradient is small collectively.

Now we have controlled the deterministic bias. Then, we upper bound the fourth term,

which is the noise for the purpose of privacy, and show the expected prediction error decrease

in every gradient step. The difficulty is that, since our clipping threshold is adaptive, the

decrease of the estimation error depends on the estimation error of all the previous steps. This

causes that in some iterations, the estimation error actually increases. In order to get around

this, we split the iterations into length κ chunks, and argue that the maximum estimation

error in a chunk must be a constant factor smaller than the previous chunk. This implies we

will reach the desired error within Õ(κ) steps.

5.6 Discussion

We provide a novel variant of DP-SGD algorithm for differentially private linear regression

under label corruption. We show the first near-optimal rate that achieves privacy and

robustness to label corruptions simultaneously. When there is no label corruption, our result

also improves upon the state-of-the-art method [199] in terms of the condition number κ.

Compared to [199], our algorithm has two innovations: 1) we introduce a novel adaptive

clipping, which is critical in achieving robustness against label corruptions; and 2) we use
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full batch gradient descent and a novel convergence analysis to get the near-optimal sample

complexity.
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Appendix A

APPENDICES FOR CHAPTER 2

A.1 Proof of Theorem 5 on the accuracy of the exponential mechanism for
Tukey median

First, the (ε, 0)-differential privacy guarantee of private Tukey median follows as a corollary of

Proposition 2.2.2, by noting that sensitivity of nDTukey(Dn, x) is one, where Dn is a dataset

of size n. This follows from the fact that for any fixed x and v, |{z ∈ Dn : (v⊤(x− z)) ≥ 0}|

is the number of samples on one side of the hyperplane, which can change at most by one if

we change one sample in D.

Next, given n i.i.d samples X1, X2, . . . Xn from distribution p, denote p̂n as the empirical

distribution defined by the samples X1, X2, . . . Xn. Denote p̃n as the distribution that is

corrupted from p̂n. We slightly overload the definition of Tukey depth to denote DTukey(p, x)

as the Tukey depth of point x ∈ Rd under distribution p, which is defined as

DTukey(p, x) = inf
v∈Rd

Pz∼p(v
⊤(x− z) ≥ 0).

Note that this is the standard definition of Tukey depth. First we show that for n large

enough, the Tueky depth for the empirical distribution is close to that of the true distribution.

We provide proofs of the following lemmas later in this section.

Lemma A.1.1. With probability 1− δ, for any p and x ∈ Rd,

|DTukey(p, x)−DTukey(p̂n, x)| ≤ C ·
√
d+ 1 + log(1/δ)

n
.

The proof of Lemma A.1.1can be found in §A.1.1. This allows us to use the known Tukey

depths of a Gaussian distribution to bound the Tukey depths of the corrupted empirical one.

We use this to show that there is a strict separation between the Tueky depth of a point in
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S1 = {x : ∥x− µ∥ ≤ α} and a point in S2 = {x : ∥x− µ∥ ≥ 10α}. The proof of Lemma A.1.2

can be found in §A.1.2.

Lemma A.1.2. Define p = N (µ, I), and assume α < 0.01. Given that n = Ω(α−2(d +

log(1/δ))), with probability 1− δ,

1. For any point x ∈ Rd, ∥x− µ∥ ≤ α, it holds that

DTukey(p̃n, x) ≥
1

2
− 2α

2. For any point x ∈ Rd, ∥x− µ∥ ≥ 10α, it holds that

DTukey(p̃n, x) ≤
1

2
− 5α.

This implies that most of the probability mass of the exponential mechanism is concentrated

inside a ball of radius O(α) around the true mean µ. Hence, with high probability, the

exponential mechanism outputs an approximate mean that is O(α) close to the true one. The

following lemma finishes the proof the the desired claim, whose proof can be found in §A.1.3.

Lemma A.1.3 (Utility). Denote p̃n as the distribution that is corrupted from p̂n. Suppose

x is sampled from [−2R, 2R]d with density r(x) ∝ exp(−(1/2)εnDTukey(p̃n, x)), then given

n = Ω( (d/(αε)) log(dR/ηα) + (1/α2)(d+ log(1/η)) ) and µ ∈ [−R,R]d, and R ≥ α,

P(∥x− µ∥ ≤ 5α) ≥ 1− η .

A.1.1 Proof of Lemma A.1.1

From the VC inequality ([59], Chap 2, Chapter 4.3) and the fact that the family of sets

{{z|v⊤z ≥ t}|∥v∥ = 1, t ∈ R, v ∈ Rd} has VC dimension d + 1, there exists some universal

constant C such that with probability at least 1− δ

sup
t∈R,v∈Rd,∥v∥=1

|Pz∼p(v
⊤z ≥ t)− Pz∼p̂n(v

⊤z ≥ t)| ≤ C ·
√
d+ 1 + log(1/δ)

n
,
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which implies, for any x ∈ Rd,

sup
v∈Rd

|Pz∼p(v
⊤(x− z) ≥ 0)− Pz∼p̂n(v

⊤(x− z) ≥ 0)| ≤ C ·
√
d+ 1 + log(1/δ)

n
,

by letting t = v⊤x. We conclude the proof since

|DTukey(p, x)−DTukey(p̂n, x)|

= | inf
v∈Rd

Pz∼p(v
⊤(x− z) ≥ 0)− inf

v∈Rd
Pz∼p̂n(v

⊤(x− z) ≥ 0)|

≤ sup
v∈Rd

|Pz∼p(v
⊤(x− z) ≥ 0)− Pp̂n(v

⊤(x− z) ≥ 0)|

≤ C ·
√
d+ 1 + log(1/δ)

n
.

A.1.2 Proof of Lemma A.1.2

For the first claim, we first prove a lower bound on DTukey(p, x). Since p = N (µ, I), for any

v ∈ Rd such that ∥v∥2 = 1,

Pz∼p(v
⊤(z − x) ≥ 0)

= Pz∼N(0,1)(z ≥ v⊤(x− µ))

=

∫ ∞

v⊤(x−µ)

1√
2π

exp(−z2/2)dz

≥ 1

2
− 1√

2π
v⊤(x− µ)

≥ 1

2
− 1√

2π
∥x− µ∥2

≥ 1

2
− 1√

2π
α

Thus,

DTukey(p, x)

= inf
v∈Rd

Pz∼p(v
⊤(x− z) ≥ 0)

≥ 1

2
− 1√

2π
α
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Then Lemma A.1.1 implies that with probability 1− δ

DTukey(p̂n, x) ≥
1

2
− 1√

2π
α− C ·

√
d+ 1 + log(1/δ)

n
.

Since the corruption can change at most α probability mass, it holds that |DTukey(p̃n, x)−

DTukey(p̂n, x)| ≤ α. Setting n = Ω(α−2(d+ log(1/δ))) yields

DTukey(p̃n, x) ≥
1

2
− 1√

2π
∥x− µ∥2 − C ·

√
d+ 1 + log(1/δ)

n
− α

≥ 1

2
− 2α.

For the second claim, note that

DTukey(p, x)

≤
∫ ∞

v⊤(x−µ)

1√
2π

exp(−z2/2)dz

(a)

≤ 1

2
− 1√

2π
exp(−(20α)2/2) · 20α

(b)

≤ 1

2
− 7α

where (a) holds since ∥x− µ∥ ≥ 20α, and it is easy to verify that (b) holds for α ≤ 0.01. The

second claim holds since

DTukey(p̃n, x)

≤ DTukey(p̂n, x) + α

≤ DTukey(p, x) + α + C ·
√
d+ 1 + log(1/δ)

n
(a)

≤ DTukey(p, x) + 2α

≤ 1

2
− 5α,

where (a) holds by setting n = Ω(α−2(d+ log(1/δ))).
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A.1.3 Proof of Lemma A.1.3

Let r(x) = 1
A
exp(−εnDTukey(p̃n, x)) where A is the normalization factor. Then

P(∥x− µ∥ ≤ α) ≥ 1

A
exp(εn(

1

2
− 2α)) · πd/2

Γ(d/2 + 1)
αd,

using the fact that µ ∈ [−R,R]d and that R ≥ α, and

P(∥x− µ∥ ≥ 5α) ≤ 1

A
exp(εn(

1

2
− 10α)) · (4R)d.

Hence

log(
P(∥x− µ∥ ≤ α)

P(∥x− µ∥ ≥ 5α)
) ≥ εn(3α)− C · d log(dR/α),

where C is an absolute constant. If we set n = Ω(d log(dB/δα)
αε

), we get that

P(∥x− µ∥ ≤ α)

P(∥x− µ∥ ≥ 5α)
≥ 10

δ
,

which implies that with probability at least 1− δ, ∥x− µ∥ ≤ 5α.

A.2 Estimating the range with DPrange

Algorithm 14: Differentially private range estimation (DPrange) [139, Algorithm

1]
Input: Dn = {xi}ni=1, R, ε, δ, σ = 1

1 for j ← 1 to d do

2 Run the histogram learner of Lemma A.2.1 with privacy parameters(
min{ε, 0.9}/2

√
2d log(2/δ), δ/(2d)

)
and bins Bl = (2σℓ, 2σ(ℓ+ 1)] for all

ℓ ∈ {−⌈R/2σ⌉ − 1, . . . , ⌈R/2σ⌉} on input Dn to obtain noisy estimates

{h̃j,l}⌈R/2σ⌉
l=−⌈R/2σ⌉−1

3 x̄j ← 2σ · argmaxℓ∈{−⌈R/2σ⌉−1,...,⌈R/2σ⌉} h̃j,ℓ

Output: (x̄, B = 8σ
√
log(dn/ζ))
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A.2.1 Proof of Lemma 2.3.5

Assuming the distribution is σ2 sub-Gaussian, we use P to denote the sub-Gaussian dis-

tribution. Denote Il = [2σl, 2σ(l + 1)] as the interval of the l’th bin. Denote the popula-

tion probability in the l’th bin hj,l = Px∼P [xj ∈ Il], empirical probability in the l’th bin

h̃j,l =
1
n

∑
xi∈D 1{xi,j ∈ Il}, and the noisy version ĥj,l computed by the histogram learner of

Lemma A.2.1. Notice that Lemma A.2.1 with d compositions (Lemma 2.3.4) immediately

implies that our algorithm is (ε, δ)-differentially private.

For the utility of the algorithm, we will first show that for all dimension j ∈ [d], the

output |x̄j − µj| = O(σ). Note that by the definition of σ2-subgaussian, it holds that

for all i ∈ [d], P[|xi − µi| ≥ z] ≤ 2 exp(−z2/σ2) where x is drawn from distribution P.

This implies that P[|xi − µi| ≥ 2σ] ≤ 2 exp(−4) ≤ 0.04. Suppose the k’th bin contains µj,

namely µj ∈ Ik. Then it is clear that [µj − 2σ, µj + 2σ] ⊂ (Ik−1 ∪ Ik ∪ Ik+1). This implies

hj,k−1 + hj,k + hj,k+1 ≥ 1− 0.04 = 0.96, hence min(hj,k−1, hj,k, hj,k+1) ≥ 0.32.

Recall that G is the set of clean data drawn from distribution P . By Dvoretzky-Kiefer-

Wolfowitz inequality and an union bound over j ∈ [d], we have that with probability 1− ζ,

maxj,l(|hj,l − 1
n

∑
x∈G xj|) ≤

√
log(d/ζ)

n
. The deviation due to corruption is at most α on

each bin, hence we have maxj,l(|hj,l − ĥj,l) ≤
√

log(d/ζ)
n

+ α. Lemma A.2.1 and a union

bound over j ∈ [d] implies that with probability 1 − ζ , maxj,l(|h̃j,l − ĥj,l|) ≤ β when

n ≥ Ω(min

{√
d log(1/δ)

εβ
log(dR/ζ),

√
d log(1/δ)

εβ
log(d/ζδ)

}
).

Assuming that n = Ω

(√
d log(1/δ)

ε
min {log(dR/ζ), log(d/ζδ)}

)
, we have that with prob-

ability 1 − ζ, maxj,l(|hj,l − ĥj,l|) ≤ 0.01 + α. Using the assumption that α ≤ 0.1, since

min(hj,k−1, hj,k, hj,k+1) − 0.11 ≥ 0.31 ≥ 0.04 + 0.11 ≥ maxl ̸=k−1,k,k+1 hj,l + 0.11. This im-

plies that with probability 1 − ζ, the algorithm choose the bin from k − 1, k, k + 1, which

means the estimate |x̄j − µ| ≤ 4σ. By the tail bound of sub-Gaussian distribution and a

union bound over n, d, we have that with probability 1 − ζ, for all xi ∈ D and j ∈ [d],

xi,j ∈ [x̄j − 8σ
√
log(nd/ζ), x̄j + 8σ

√
log(nd/ζ)].

Lemma A.2.1 (Histogram Learner, Lemma 2.3 in [139]). For every K ∈ N ∪∞, domain Ω,
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for every collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N, ε, δ ∈ (0, 1/n), β > 0

and α ∈ (0, 1) there exists an (ε, δ)-differentially private algorithm M : Ωn → RK such that

for any set of data X1, . . . , Xn ∈ Ωn

1. p̂k = 1
n

∑
Xi∈Bk

1

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn), and

3.

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/αδ)

}
then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

Proof. This is an intermediate result in the proof of Lemma 2.3 in [139].

A.3 Differentially private robust filtering with DPfilter

A.3.1 Proofs of the sensitivity of the filtering in Lemma 2.3.6 and Lemma A.5.1

Proof of Lemma 2.3.6. We only need to show that one step of the proposed filter is a

contraction. To this end, we only need to show contraction for two datasets at distance 1,

i.e., d△(D,D′) = 1. For fixed (µ, v) and Z, we apply filter to set of scalars (v⊤(D − µ))2 and

(v⊤(D′ − µ))2, whose distance is also one. If the entries that are different (say a ∈ D and

a′ ∈ D′) are both below the subset of the top 2nα points (as in Definition 2.3.1), then the

same set of points will be removed for both and the distance is preserved d△(S(D), S(D′)) = 1.

If they are both above the top 2nα subset, then either both are removed, one of them is

removed, or both remain. The rest of the points that are removed coincide in both sets.

Hence, d△(S(D), S(D′)) ≤ 1. If a is below and a′ is above the top 2nα subset of respective

datasets, then either a′ is not removed (in which case d△(S(D), S(D′)) = 1) or a′ is removed

(in which case S(D) = S(D′) ∪ {a} and the distance remains one).
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Note that when there are ties, it is critical to resolve them in a consistent manner in

both datasets D and D′. The tie breaking rule of Definition 2.3.1 is critical in sorting those

samples with the same score τi’s in a consistenet manner.

Proof of Lemma A.5.1. The analysis of contraction of the filtering step in DPMMWfilter

is analogous to that of DPfilter in Lemma 2.3.6.
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Algorithm 15: Interactive version of DPfilter
Input: α ∈ (0, 1), T ∈ Z+

1 ε1 ← min{ε, 0.9}/(4
√
2T log(2/δ)), δ1 ← δ/(8T )

2 for t = 1, . . . , T do

3 nt ← qsize({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], ε1)

4 if nt < 3n/4 then

5 terminate

6 µt ← qmean({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], ε1)

7 if λt ≤ (C − 0.01)α log 1/α then
Output: µt

8 λt ← qnorm({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], µt, ε1)

9 vt ← qPCA({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], µt, ε1, δ1))

10 Zt ← Unif([0, 1])

Output: µt

11 Filter ({(µℓ, vℓ, Zℓ)}ℓ∈[t−1]):

12 S0 ← [n]

13 for ℓ = 1, . . . , t− 1 do

14 Sℓ ← Sℓ−1\ {i ∈ Sℓ−1 : i ∈ T2α for {τj = (v⊤ℓ (xj − µℓ))
2}j∈Sℓ−1

and τi ≥ dB2 Zℓ}

15 qmean({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], ε):

16 Filter({(µℓ, vℓ, Zℓ)}ℓ∈[t−1])

17 return µt ← (1/|St−1|)
(∑

i∈St−1
xi
)
+ Lap(2B/(nε))

18 qPCA({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], µt, ε, δ):

19 Filter({(µℓ, vℓ, Zℓ)}ℓ∈[t−1])

20 return vt ← top singular vector of Σt−1 =

21 (1/n)
∑

i∈St−1
(xi − µt)(xi − µt)

⊤ +N (0, (B2d
√
2 log(1.25/δ)/(nε))2Id2×d2)

22 qnorm({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], µt, ε):

23 Filter({(µℓ, vℓ, Zℓ)}ℓ∈[t−1])

24 return λt ← ∥(1/n)
∑

i∈St−1
(xi − µt)(xiµt)

⊤∥2 + Lap(2B2d/(nε))

25 qsize({(µℓ, vℓ, Zℓ)}ℓ∈[t−1], ε):

26 Filter({(µℓ, vℓ, Zℓ)}ℓ∈[t−1])

27 return nt ← |St−1|+ La[(1/ε)
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A.3.2 Proof of part 1 of Lemma 2.3.7 on differential privacy of DPfilter

We explicitly write out how many times we access the database and how much privacy is

lost each time in an interactive version of DPfilter in Algorithm 15, which performs the

same operations as DPfilter. In order to apply Lemma 2.3.4, we cap ε at 0.9 in initializing

ε1. We call qmean, qPCA, qnorm and qsize T times, each with (ε1, δ1) guarantee. In total this

accounts for (ε, δ) privacy loss, using Lemma 2.3.4 and our choice of ε1 and δ1.

This proof is analogous to the proof of DP for DPMMWfilter in §A.5.1, and we omit

the details here. We will assume for now that |Sr| ≥ n/2 for all r ∈ [t] and prove privacy.

This happens with probability larger than 1− δ1, hence ensuring the privacy guarantee. In

all sub-routines, we run Filter(·) in Algorithm 15 to simulate the filtering process so far and

get the current set of samples St. Lemma 2.3.6 allows us to prove privacy of all interactive

mechanisms. This shows that the two data datasets St and S ′
t are neighboring, if they are

resulting from the identical filtering but starting from two neighboring datasets Dn and

D′
n. As all four sub-routines are output perturbation mechanisms with appropriately chosen

sensitivities, they satisfy the desired (ε1, δ1)-DP guarantees. Further, the probability that

nt > 3/4n and |St| ≤ n/2 is less than δ1 for n = Ω̃((1/ε1) log(1/δ1)).

A.3.3 Proof of part 2 of Lemma 2.3.7 on accuracy of DPfilter

The following theorem analyzing DPfilter implies the desired Lemma 2.3.7 when the good

set is α-subgaussian good, which follows from A.6.3 and the assumption that n = Ω̃(d/α2).

Theorem 25 (Anlaysis of DPfilter). Let S be an α-corrupted sub-Gaussian dataset under

Assumption 1, where α ≤ c for some universal constant c ∈ (0, 1/2). Let Sgood be α-

subgaussian good with respect to µ ∈ Rd. Suppose D = {xi ∈ x̄ + [−B/2, B/2]d}ni=1 be the

projected dataset where all of the uncorrupted samples are contained in x̄+ [−B/2, B/2]d. If

n = Ω̃ (d2B3 log(1/δ)/(εα)), then DPfilter terminates after at most O (dB2) iterations and

outputs St such that with probability 0.9, we have |St ∩ Sgood| ≥ (1− 10α)n and

∥µ(St)− µ∥2 ≲ α
√
log 1/α .
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To prove this theorem, we use the following lemma to first show that we do not remove

too many uncorrupted samples. The upper bound on the accuracy follows immediately from

Lemma A.6.7 and the stopping criteria of the algorithm.

Lemma A.3.1. If n ≳ B2d3/2

ε1α log 1/α
log(1/δ), λt ≥ (C − 0.01) · α log 1/α and |St ∩ Sgood| ≥

(1− 10α)n, then there exists constant C > 0 such that for each iteration t, with probability

1−O(1/d), we have Eq. (A.3) holds. If this condition holds, we have

E |(St \ St+1) ∩ Sgood| ≤ E |St \ St+1 ∩ Sbad| .

We measure the progress by by summing the number of clean samples removed up to

iteration t and the number of remaining corrupted samples, defined as dt ≜ |(Sgood ∩ S) \

St|+ |St \ (Sgood ∩ S)|. Note that d1 = αn, and dt ≥ 0. At each iteration, we have

E[dt+1 − dt|d1, d2, · · · , dt] = E [|Sgood ∩ (St \ St+1)| − |Sbad ∩ (St \ St+1)|] ≤ 0,

from the Lemma A.3.1. Hence, dt is a non-negative super-martingale. By optional stopping

theorem, at stopping time, we have E[dt] ≤ d1 = αn. By Markov inequality, dt is less than

10αn with probability 0.9, i.e. |St ∩ Sgood| ≥ (1 − 10α)n. The desired bound follows from

induction and Lemma A.6.7.

Now we bound the number of iterations under the conditions of Lemma A.3.2. Let

Wt = |St \ St−1|/n. Since Eq. (A.4), we have

E[Wt] ≥
1

n

∑
i∈T2α

τi
dB2

≥ 0.7∥M(St−1)− I∥2
αdB2

≥ 0.7Cα log(1/α)

dB2
.

Let T be the stopping time. We know
∑T

t=1Wt ≤ 10α. By Wald’s equation, we have

E[
T∑
t=1

Wt] = E[
T∑
t=1

E[Wt]] ≥ E[T ]
0.7Cα log(1/α)

dB2
.

This means E[T ] ≤ (15dB2)/(C log(1/α)). By Markov inequality we know with probability

0.9, we have T = O(dB2/ log(1/α)).
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A.3.3.1 Proof of Lemma A.3.1

The expected number of removed good points and bad points are proportional to the∑
i∈Sgood∩T2α τi and

∑
i∈Sbad∩T2α τi. It suffices to show∑

i∈Sgood∩T2α

τi ≤
∑

i∈Sbad∩T2α

τi .

Assuming we have ∥M(St−1) − I∥2 ≥ Cα log 1/α for some C > 0 sufficiently large, it

suffices to show

1

n

∑
i∈Sbad∩T2α

τi ≥
1

1000
∥M(St−1)− I∥2 .

First of all, we have

1

n

∑
i∈St−1

τi − 1 = v⊤t M(St−1)vt − 1

= v⊤t (M(St−1)− I) vt

Lemma A.6.6 shows that the magnitude of the largest eigenvalue of M(St−1)− I is positive

since the magnitudes negative eigenvalues are all less than cα log 1/α. So we have

1

n

∑
i∈St−1

τi − 1 ≥ ∥M(St−1)− I∥2 −O(α log 1/α) (A.1)

≥ 0.9∥M(St−1)− I∥2 , (A.2)

where the first inequality follows from Lemma A.3.3, and the second inequality follows from

our choice of large constant C. The next lemma regularity conditions for τi’s for each iteration

is satisfied.

Lemma A.3.2. If n ≳ B2d3/2

ε1α log 1/α
log(1/δ), then there exists a large constant C > 0 such that,

with probability 1−O(1/d), we have

1.

1

n

∑
i∈Sgood∩T2α∩St−1

τi ≤
1

1000
∥M(St−1)− I∥2 . (A.3)
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2. For all i /∈ T2α,

ατi ≤
1

1000
∥M(St−1)− I∥2 .

3.

1

n

∑
i∈Sgood∩St−1

(τi − 1) ≤ 1

1000
∥M(St−1)− I∥2 .

Thus, by combining with Lemma A.3.2, we have

1

n

∑
i∈St−1∩Sbad

τi ≥ 0.8∥M(St−1)− I∥2 .

We now have

1

n

∑
i∈Sbad∩T2α

τi ≥ 0.8∥M(St−1)− I∥2 −
∑

i∈Sbad∩St−1\T2α

τi

≥ 0.8∥M(St−1)− I∥2 − max
i∈Sbad∩St−1\T2α

ατi

≥ 0.8∥M(St−1)− I∥2 −
1

1000
∥M(St−1)− I∥2 (A.4)

≥ 1

n

∑
i∈Sgood∩T2α

τi ,

which completes the proof.

A.3.3.2 Proof of Lemma A.3.2

By our choice of sample complexity n, with probability 1−O(1/dB2), we have ∥µ(St−1)−

µt∥22 ≲ α log 1/α, v⊤t (M(St−1)− I) vt ≳ ∥M(St−1) − I∥2 − α log 1/α (Lemma A.3.3), and

∥M(St−1)− I∥2 ≥ Cα log 1/α simultaneously hold before stopping.

Lemma A.3.3. If

n ≳
d3/2B2

ηε1

√
2 ln

1.25

δ
log

1

ζ
,

then with probability 1− ζ, we have

v⊤t (M(St−1)− I) vt ≥ ∥M(St−1)− I∥2 − 2η − 2|St−1|
n
∥µt − µ(St−1)∥22
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We first consider the upper bound of the good points.

1

n

∑
i∈Sgood∩T2α∩St−1

τi =
1

n

∑
i∈Sgood∩T2α∩St−1

⟨xi − µt, vt⟩2

(a)

≤ 2

n

∑
i∈Sgood∩T2α∩St−1

⟨xi − µ, vt⟩2 +
2

n
|Sgood ∩ T2α ∩ St−1| ⟨µ− µt, vt⟩2

≤ O(α log 1/α) + α (∥µ− µ(St−1)∥2 + ∥µt − µ(St−1)∥2)2

(b)

≤ O(α log 1/α) + α
(
O(α

√
log 1/α) +

√
α (∥M(St−1)− I∥2 +O(α log 1/α)) +O(

√
α log 1/α)

)2
≤ O(α log 1/α) + α2∥M(St−1)− I∥2
(c)

≤ 1

1000
∥M(St−1)− I∥2

where the (a) is implied by the fact that for any vector x, y, z, we have (x− y)(x− y)⊤ ⪯

2(x− z)(x− z)⊤ + 2(y − z)(y − z)⊤, (b) follows from Lemma A.6.7 and c follows from our

choice of large constant C.

Since |Sbad ∩ T2α| ≤ αn, we know |Sgood ∩ T2α| ≥ αn, so we have for i /∈ T2α,

ατi ≤
α

|Sgood ∩ T2α ∩ St−1|
∑

i∈Sgood∩T2α∩St−1

τi ≤
1

1000
∥M(St−1)− I∥2 .

Since |Sgood ∩ St−1| ≥ (1− 10α)n, we have

1

n

∑
i∈Sgood∩St−1

τi =
1

n

∑
i∈Sgood∩St−1

⟨xi − µ(St−1), vt⟩2 (A.5)

=
1

n

∑
i∈Sgood∩St−1

⟨xi − µ(Sgood ∩ St−1), vt⟩2 +
|Sgood ∩ St−1|

n
⟨µ(Sgood ∩ St−1)− µ(St−1), vt⟩2

(A.6)
(a)

≤ cα log 1/α + 1 + ∥µ(Sgood ∩ St−1)− µ(St−1)∥22 (A.7)

≤ cα log 1/α + 1 + (∥µ(Sgood ∩ St−1)− µ∥2 + ∥µ− µ(St−1)∥2)2 (A.8)
(b)

≤ cα log 1/α + 1 + α∥M(St−1)− I∥2 +O(α log 1/α) (A.9)
(c)

≤ 1

1000
∥M(St−1)− I∥2 , (A.10)
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where (a) follows from Lemma A.6.6, and (b) follows from Lemma A.6.7, and (c) follows from

our choice of large constant C.

A.3.3.3 Proof of Lemma A.3.3

Proof. We have following identity.

1

n

∑
i∈St−1

(xi − µt)(xi − µt)
⊤

=
1

n

∑
i∈St−1

(xi − µ(St−1))(xi − µ(St−1))
⊤ +
|St−1|
n

(µ(St−1)− µt)(µ(St−1)− µt)
⊤ .

So we have,

v⊤t (M(St−1)− I) vt

≥ v⊤t

 1

n

∑
i∈St−1

(xi − µt)(xi − µt)
⊤ − I

 vt −
|St−1|
n
∥µt − µ(St−1)∥22

≥ ∥M(St−1)− I∥2 − 2η − 2|St−1|
n
∥µt − µ(St−1)∥22

where the last inequality follows from Lemma A.6.6, which shows that the magnitude of the

largest eigenvalue of M(St−1)− I must be positive.

A.3.4 Proof of Theorem 6

Differential privacy guarantee. To achieve (ε0, δ0) end-to-end target privacy guarantee,

Algorithm 3 separates the privacy budget into two. The (0.01ε0, 0.01δ0)-DP guarantee of

DPrange follows from Lemma 2.3.5. The (0.99ε0, 0.99δ0)-DP guarantee of DPfilter follows

from Lemma 2.3.7.

Accuracy. From Lemma 2.3.5 DPrange is guaranteed to return a hypercube that includes

all clean data in the dataset. It follows from Lemma 2.3.7 that when n = Ω̃(d/α2 +

d2 log(1/δ)/(εα)), we have ∥µ− µ̂∥2 = O(α
√
log(1/α)).
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A.4 Differentially private 1D filter with DP-1Dfilter

A.4.1 Proof of Lemma 2.3.9

1. Threshold ρ sufficiently reduces the total score.

Let ρ be the threshold picked by the algorithm. Let τ̂i denote the minimum value of

the interval of the bin that τi belongs to. It holds that

1

n

∑
τi≥ρ,i∈[n]

(τi − ρ) ≥
1

n

∑
τ̂i≥ρ,i∈[n]

(τ̂i − ρ)

=
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)hj

(a)

≥
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)h̃j −O

(
log(B2d) ·B2d ·

√
log(log(B2d) log d) log(1/δ)

εn

)
(b)

≥ 0.31ψ̃ − Õ(B
2d

εn
)

(c)

≥ 0.3ψ − Õ(B
2d

εn
) ,

where (a) holds due to the accuracy of the private histogram (Lemma A.6.12), (b) holds

by the definition of ρ in our algorithm, and (c) holds due to the accuracy of ψ̃. This

implies if ρ < 1, then 1
n

∑
τi<ρ(τi − 1) is negative and if ρ ≥ 1, then

1

n

∑
τi<ρ

(τi − 1) = ψ − 1

n

∑
τi≥ρ

(τi − 1) ≤ ψ − 1

n

∑
τi≥ρ

(τi − ρ) ≤ 0.7ψ + Õ(B2d/εn).

By Lemma A.4.1, it holds that

1

n

∑
i∈S\T2α

(τi − 1) = ψ − 1

n

∑
i∈Sgood∩T2α

(τi − 1)− 1

n

∑
i∈Sbad∩T2α

(τi − 1)

≤ ψ − 1

n

∑
i∈Sbad∩T2α

(τi − 1)

≤ (2/1000)ψ

And we conclude that

1

n

∑
τi<ρ or i/∈T2α

(τi − 1) ≤ 0.71ψ + Õ(B2d/εn) ≤ 0.75ψ
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2. Threshold ρ removes more bad data points than good data points.

Define C2 to be the threshold such that 1
n

∑
τi>C2

(τi − C2) = (2/3)ψ. Suppose 2b ≤

C2 ≤ 2b+1, 1
n

∑
τ̂i≥2b−1(τ̂i − 2b−1) ≥ (1/3)ψ because ∀τi ≥ C2, (τ̂i − 2b−1) ≥ 1

2
(τi − C2).

Trivially C2 ≥ 1 due to the fact that 1
n

∑
τi≥1 τi − 1 ≥ ψ. Then we have the threshold

picked by the algorithm ρ ≥ 2b−1, which implies ρ ≥ 1
4
C2. Suppose ρ < C2, since

ρ ≥ 1
4
C2, we have

(
∑

i∈Sbad∩T2α,τi<ρ

τi +
∑

i∈Sbad∩T2α,τi≥ρ

ρ) ≥ 1

4
(

∑
i∈Sbad∩T2α,τi<C2

τi +
∑

i∈Sbad∩T2α,τi≥C2

C2)

(a)

≥ 10

4
(

∑
i∈Sgood∩T2α,τi<C2

τi +
∑

i∈Sgood∩T2α,τi≥C2

C2)

(b)

≥ 10

4
(

∑
i∈Sgood∩T2α,τi<ρ

τi +
∑

i∈Sgood∩T2α,τi>=ρ

ρ),

where (a) holds by Lemma A.4.2, and (b) holds since ρ ≤ C2. If ρ ≥ C2, the statement

of the Lemma A.4.2 directly implies Equation (2.4).

Lemma A.4.1. [Conditions for τi’s]

Suppose

1

n

∑
i∈Sgood∩S

(τi − 1) ≤ ψ/1000

1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000

then, we have

ατ2αn ≤ ψ/1000

1

n

∑
i∈Sbad∩T2α

(τi − 1) ≥ (998/1000)ψ

Proof. Since |Sgood ∩ T2α| ≥ αn, it holds

ατ2αn ≤ ψ/1000.
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1

n

∑
i∈Sbad∩T2α

(τi − 1) =
1

n

∑
i∈Sbad∩S

(τi − 1)− 1

n

∑
i∈Sbad∩S\T2α

(τi − 1)

≥ (999/1000)ψ − 1

n

∑
i∈Sbad∩S\T2α

(τi − 1)

≥ (999/1000)ψ − (1/1000)ψ

= (998/1000)ψ

Lemma A.4.2. Assuming that the conditions in Lemma A.4.1 holds, and for any C such

that

1

n

∑
i∈S,τi<C

(τi − 1) +
1

n

∑
i∈S,τi≥C

(C − 1) ≥ (1/3)ψ ,

we have ∑
i∈Sbad∩T2α,τi<C

τi +
∑

i∈Sbad∩T2α,τi≥C

C ≥ 10(
∑

i∈Sgood∩T2α,τi<C

τi +
∑

i∈Sgood∩T2α,τi≥C

C)

Proof. First we show an upper bound on Sgood ∩ T2α:

1

n

∑
i∈Sgood∩T2α,τi<C

τi +
1

n

∑
i∈Sgood∩T2α,τi≥C

C ≤ 1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000.

Then we show an lower bound on Sbad ∩ T2α:

1

n

∑
i∈Sbad∩S,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩S,τi>C

(C − 1)

=
1

n

∑
i∈S,τi<C

(τi − 1) +
1

n

∑
i∈S,τi≥C

(C − 1)

−( 1
n

∑
i∈Sgood∩S,τi<C

(τi − 1) +
1

n

∑
i∈Sgood∩S,τi≥C

(C − 1))

≥ (1/3− 1/1000)ψ .
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We have

1

n

∑
i∈Sbad∩T2α,τi<C

τi +
1

n

∑
i∈Sbad∩T2α,τi>C

C ≥ 1

n

∑
i∈Sbad∩T2α,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩T2α,τi>C

(C − 1)

=
1

n

∑
i∈Sbad∩S,τi<ρ

(τi − 1) +
1

n

∑
i∈Sbad∩S,τi>C

(C − 1)

−

 1

n

∑
i∈Sbad∩S\T2α,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩S\T2α,τi>C

(C − 1)


≥ (1/3− 1/1000)ψ − ατ2αn

≥ (1/3− 2/1000)ψ

Combing the lower bound and the upper bound yields the desired statement

A.5 Proof of the analysis of PRIME in Theorem 7

A.5.1 Proof of part 1 of Theorem 7 on differential privacy

Let (ε0, δ0) be the end-to-end target privacy guarantee. The (0.01ε0, 0.01δ0)-DP guarantee

of DPrange follows from Lemma 2.3.5. We are left to show that DPMMWfilter in

Algorithm 6 satisfy (0.99ε0, 0.99δ0)-DP. To this end, we explicitly write out how many times

we access the database and how much privacy is lost each time in an interactive version of

DPMMWfilter in Algorithm 17, which performs the same operations as DPMMWfilter.

In order to apply Lemma 2.3.4, we cap ε at 0.9 in initializing ε2. We call qspectral and

qsize T1 times, each with (ε1, δ1) guarantee. In total this accounts for (0.5ε, 0.5δ) privacy loss.

The rest of the mechanisms are called 5T1T2 times (qspectral(·) and qMMW(·) each call two DP

mechanisms internally), each with (ε2, δ2) guarantee. In total this accounts for (0.5ε, 0.5δ)

privacy loss. Altogether, this is within the privacy budget of (ε = 0.99ε0, δ = 0.99δ0).

We are left to show privacy of qspectral, qMMW, and q1Dfilter, and qsize in Algorithm 16. We

will assume for now that |S(ℓ)
r | ≥ n/2 for all ℓ ∈ [T1] and r ∈ [T2] and prove privacy. We show

in the end that this happens with probability larger than 1− δ1. In all sub-routines, we run

Filter(·) in Algorithm 16 to simulate the filtering process so far and get the current set of
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samples S(s)
ts . The following main technical lemma allows us to prove privacy of all interactive

mechanisms. This is a counterpart of Lemma 2.3.6 used for DPfilter. We provide a proof

in §A.3.1.

Lemma A.5.1. Let S(Dn) ⊆ Dn denote the output of the simulated filtering process Filter(·)

on Dn for a given set of parameters ({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s]) in Algorithm 16.

Then we have d△(S(Dn), S(D′)n) ≤ d△(Dn,D′
n), where d△(D,D′) ≜ max{|D \ D′|, |D′ \ D|}.

This is a powerful tool for designing private mechanisms, as it guarantees that we can

safely simulate the filtering process with privatized parameters and preserve the neighborhood

of the dataset; if Dn ∼ D′
n are neighboring (i.e., d∆(Dn,D′

n) ≤ 1) then so are the filtered pair

S(Dn) and S(D′
n) (i.e., d∆(S(Dn), S(D′

n)) ≤ 1). Note that in all the interactive mechanisms

in Algorithm 16, the noise we need to add is proportional to the set sensitivity of Filter(·)

defined as ∆set ≜ maxDn∼D′
n
d∆(S(Dn), S(D′

n)). If the repeated application of the Filter(·)

is not a contraction in d∆(·, ·), this results in a sensitivity blow-up. Fortunately, the above

lemma ensures contraction of the filtering, proving that ∆set = 1. Hence, it is sufficient for us

to prove privacy for two neighboring filtered sets S ∼ S ′ (as opposed to proving privacy for

two neighboring original datasets before filtering Dn ∼ D′
n).

In qspectral, λ satisfy (ε, 0)-DP as the L1 sensitivity is ∆1 = (1/n)B2d (Definition 2.1.2)

and we add Lap(∆1/ε). The release of µ also satisfy (ε, δ)-DP as the L2 sensitivity is

∆2 = 2B
√
d/n, assuming |S| ≥ n/2 as ensured by the stopping criteria, and we add

N (0,∆2(2 log(1.25/δ))/ε)
2I). Note that in the outer loop call of qspectral, we only release µ

once in the end, and hence we count qspectral as one access. On the other hand, in the inner

loop, we use both µ and λ from qspectral so we count it as two accesses.

In qsize, the returned set size (ε, 0)-DP as the L1 sensitivity is ∆1 = 1 and we add Lap(∆1/ε).

One caveat is that we need to ensure that the stopping criteria of checking n(s) > 3n/4 ensures

that |S(s)
t | > n/2 with probability at least 1− δ1. This guarantees that the rest of the private

mechanisms can assume |S(s)
t | > n/2 in analyzing the sensitivity. Since Laplace distribution

follows f(z) = (ε/2)e−ε|z|, we have P(n(s) > 3n/4 and |S(s)
t | < n/2) ≤ (1/2)e−nε/4. Hence,
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the desired privacy is ensured for (1/2)e−nε/4 ≤ δ1 (i.e., n ≥ (4/ε1) log(1/(2δ1))).

In qMMW, Σ is (ε, δ)-DP as the L2 sensitivity is ∆2 = B2d/n, and we addN (0,∆2(2 log(1.25/δ))/ε)
2I).

ψ is (ε, 0)-DP as the L1 sensitivity is ∆1 = 2B2d/n and we add Lap(∆1/ε). This is made

formal in the following theorem with a proof. in §A.5.1.1. This algorithm is identical to the

MOD-SULQ algorithm introduced in [33] and analyzed in [46, Theorem 5], up to the choice

of the noise variance. But a tighter analysis improvees over the MOD-SULQ analysis from

[46] by a factor of d in the variance of added Gaussian noise as noted in [80].

Lemma A.5.2 (Differentially Private PCA). Consider a dataset {xi ∈ Rd}ni=1. If ∥xi∥2 ≤ 1

for all i ∈ [n], the following privatized (centered) second moment matrix satisfies (ε, δ)-

differential privacy:

1

n

n∑
i=1

xix
⊤
i + Z ,

with Zi,j ∼ N (0, ( (1/(nε))
√
2 log(1.25/δ) )2) for i ≥ j and Zi,j = Zj,i for i < j.

In q1Dfilter, the (ε, δ) differential privacy follows from that of DP-1Dfilter proved in

Lemma 2.3.9.

A.5.1.1 Proof of Lemma A.5.2

Consider neighboring two databases D = {xi}ni=1 and D̃ = D ∪ {x̃n} \ {xn}, and let A =

(1/n)
∑

xi∈D xix
⊤
i and Ã = (1/n)

∑
xi∈D̃ xix

⊤
i . Let B and B̃ be the noise matrix. Let

G = A+B and G̃ = Ã+ B̃. At point H, we have

ℓD,D̃ = log
fG(H)

fG̃(H)
=

∑
1≤i≤j≤d

(
− 1

2β2
(Hij − Aij)

2 +
1

2β2

(
Hij − Âij

)2)
=

1

2β2

∑
1≤i≤j≤d

(
2

n
(Hij − Aij) (xn,ixn,j − x̂n,ix̂n,j) +

1

n2
(x̂n,ix̂n,j − xn,ixn,j)2

)
.

Since ∥xn∥2 ≤ 1 and ∥x̃n∥2 ≤ 1, we have
∑

1≤i≤j≤d (x̂n,ix̂n,j − xn,ixn,j)
2 = 1/2∥x̃nx̃⊤n −

xnx
⊤
n ∥2F ≤ 2.
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Now we bound the first term,

2
∑

1≤i≤j≤d

(Hij − Aij) (xn,ixn,j − x̂n,ix̂n,j) =
〈
H − A, xnx⊤n − x̃nx̃⊤n

〉
= x⊤nBxn − x̃⊤nBx̃n

≤ 2∥B∥2 .

So we have |ℓD,D̃| ≤ ε whenever ∥B∥2 ≤ nεβ2 − 1/n.

For any fixed unit vector ∥v∥2 = 1, we have

v⊤Bv = 2
∑

1≤i≤j≤d

Bijvivj ∼ N (0, 2
∑

1≤i≤j≤d

v2i v
2
j ) = N (0, 1) .

Then we have

P
(
|ℓD,D̃| ≥ ε

)
≤ P

(
∥B∥2 ≥ nεβ2 − 1/n

)
= P

(
N (0, 1) ≥ nεβ2 − 1

n

)
= Φ

(
1

n
− nεβ2

)
,

where Φ is CDF of standard Gaussian. According to Gaussian mechanism, if β = (1/(nε))
√

2 log(1.25/δ),

we have Φ
(
1
n
− nεβ2

)
≤ δ.
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Algorithm 16: Interactive differentially private mechanisms for DPMMWfilter

1 qspectral({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε, δ):

2 S ← Filter({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε, δ)

3 µ← (1/|S|)
(∑

i∈S xi
)
+N (0, (2B

√
2d log(1.25/δ)/(nε))2I)

4 λ← ∥M(S)− I∥2 + Lap(2B2d/(nε))

5 return (µ, λ)

6 qsize({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε, δ):

7 S ← Filter({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε, δ)

8 return |S|+ Lap(1/ε)

9 qMMW({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], α(s), µ

(s)
t , ε, δ):

10 S ← Filter({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε, δ)

11 Σ
(s)
ts+1 ←M(S) +N (0, (2B2d

√
2 log(1.25/δ)/(nε))2I)

12 U ← (1/Tr(exp(α(s)
∑ts+1

r=1 (Σ
(s)
r − I)))) exp(α(s)

∑ts+1
r=1 (Σ

(s)
r − I))

13 ψ ← ⟨M(S)− I, U⟩+ Lap(2B2d/(nε))

14 return (Σ
(s)
ts+1, U, ψ)

15 q1Dfilter({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], µ, U, α, ε, δ):

16 S ← Filter({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε, δ)

17 return ρ← DP-1Dfilter(µ, U, α, ε, δ, S)

18 Filter({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s]):

19 S(1) ← [n]

20 for epoch ℓ = 1, . . . , s do

21 α(ℓ) ← 1/(100(0.1/C + 1.01)λ(ℓ))

22 S
(ℓ)
1 ← S(ℓ)

23 for r = 1, . . . , ts do

24 S
(ℓ)
r+1 ← S

(ℓ)
r \ {i | i ∈ T2α for {τj = (xj − µ(ℓ)

r )⊤U
(ℓ)
r (xj − µ(ℓ)

r )}
j∈S(ℓ)

r
and

τi ≥ ρ
(ℓ)
r Z

(ℓ)
r }, where T2α is defined in Definition 2.3.1.

Output: S(s)
ts
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Algorithm 17: Interactive version of DPMMWfilter
Input: α ∈ (0, 1), T1, T2, ε1 = ε/(4T1) , δ1 = δ/(4T1),

ε2 = min{0.9, ε}/(4
√

10T1T2 log(4/δ)), δ2 = δ/(20T1T2)

1 for epoch s = 1, 2, . . . , T1 do

2 (µ(s), λ(s))← qspectral({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s−1], {(µ(ℓ), λ(ℓ))}ℓ∈[s−1], ε1, δ1)

3 n(s) ← qsize({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s−1], {(µ(ℓ), λ(ℓ))}ℓ∈[s−1], ε1, δ1)

4 if n(s) ≤ 3n/4 then terminate

5 if λ(s) ≤ Cα log(1/α) then
Output: µ(s)

6 α(s) ← 1/(100(0.1/C + 1.01)λ(s))

7 ts ← 0

8

9 for t = 1, 2, . . . , T2 do

10 (µ
(s)
t , λ

(s)
t )← qspectral({{Ψ(ℓ)

r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], ε2, δ2)

11 if λ(s)t ≤ 0.5λ(s) then

12 terminate epoch

13 else

14 (Σ
(s)
t , U

(s)
t , ψ

(s)
t )←

qPMMW({{Ψ(ℓ)
r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], α(s), µ

(s)
t , ε2, δ2)

15 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

16 α
(s)
t ← 0

17 else

18 Z
(s)
t ← Unif([0, 1])

19 ρ
(s)
t ← q1Dfilter({{Ψ(ℓ)

r }r∈[tℓ]}ℓ∈[s], {(µ(ℓ), λ(ℓ))}ℓ∈[s], µ(s)
t , U

(s)
t , α, ε2, δ2)

20 α
(s)
t ← α

21 Ψ
(s)
t ← (µ

(s)
t , λ

(s)
t ,Σ

(s)
t , U

(s)
t , ψ

(s)
t , Z

(s)
t , ρ

(s)
t , α

(s)
t )

22 ts ← t

Output: µ(T1)
tT1
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A.5.2 Proof of part 2 of Theorem 7 on accuracy

The accuracy of PRIME follows from the fact that DPrange returns a hypercube that

contains all the clean data with high probability (Lemma 2.3.5) and that DPMMWfilter

achieves the desired accuracy (Theorem 26) if the original uncorrupted dataset Sgood is

α-subgaussian good. Sgood is α-subgaussian good if we have n = Ω̃(d/α2) as shown in

Lemma A.6.3. We present the proof of Theorem 26 below. Then, we are left to show

Lemma 2.3.8 in the following section.

Theorem 26 (Analysis of accuracy of DPMMWfilter). Let S be an α-corrupted sub-

Gaussian dataset, where α ≤ c for some universal constant c ∈ (0, 1/2). Let Sgood be

α-subgaussian good with respect to µ ∈ Rd. Suppose D = {xi ∈ x̄+ [−B/2, B/2]d}ni=1 be the

projected dataset. If n ≥ Ω̃
(

d3/2B2 log(2/δ)
εα log 1/α

)
, then DPMMWfilter terminates after at most

O(log dB2) epochs and outputs S(s) such that with probability 0.9, we have |S(s)
t ∩ Sgood| ≥

(1− 10α)n and

∥µ(S(s))− µ∥2 ≲ α
√

log 1/α .

Moreover, each epoch runs for at most O(log d) iterations.

Proof. In s = O(log0.98((Cα log(1/α))/∥M(S(1))−I∥2)) epochs, Lemma 2.3.8 guarantees that

we find a candidate set S(s) of samples with ∥M(S(s) − I∥2 ≤ Cα log(1/α). Lemma 2.3.2

ensures that we get the desired bound of ∥µ(S(s)) − µ∥2 = O(α
√

log(1/α)) as long as S(s)

has enough clean data, i.e., |S(s) ∩Sgood| ≥ n(1−α). Since Lemma 2.3.8 gets invoked at most

O((log d)2) times, we can take a union bound, and the following argument conditions on the

good events in Lemma 2.3.8 holding, which happens with probability at least 0.99. To turn

the average case guarantee of Lemma 2.3.8 into a constant probability guarantee, we apply

the optional stopping theorem. Recall that the s-th epoch starts with a set S(s) and outputs

a filtered set S(s)
t at the t-th inner iteration. We measure the progress by by summing the

number of clean samples removed up to epoch s and iteration t and the number of remaining

corrupted samples, defined as d(s)t ≜ |(Sgood ∩ S(1)) \ S(s)
t |+ |S

(s)
t \ (Sgood ∩ S(1))|. Note that
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d
(1)
1 = αn, and d(s)t ≥ 0. At each epoch and iteration, we have

E[d(s)t+1 − d
(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)t ] = E

[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

from part 1 of Lemma 2.3.8. Hence, d(s)t is a non-negative super-martingale. By the optional

stopping theorem, at stopping time, we have E[d(s)t ] ≤ d
(1)
1 = αn. By the Markov inequality,

d
(s)
t is less than 10αn with probability 0.9, i.e., |S(s)

t ∩Sgood| ≥ (1− 10α)n. The desired bound

in Theorem 26 follows from Lemma 2.3.2.

A.5.3 Proof of Lemma 2.3.8

In this section we state the formal version of this lemma and provide a proof.

Lemma A.5.3 (formal version of Lemma 2.3.8). Let S be an α-corrupted sub-Gaussian

dataset under Assumption 1. For an epoch s ∈ [T1] and an iteration t ∈ [T2], under the

hypotheses of Lemma A.5.4, if Sgood is α-subgaussian good with respect to µ ∈ Rd as in

Definition A.6.2, n = Ω̃(d3/2 log(1/δ)/(εα)), and |S(s)
t ∩ Sgood| ≥ (1 − 10α)n then with

probability 1−O(1/ log3 d) the conditions in Eqs. (A.11) and (A.12) hold. When these two

conditions hold, more corrupted samples are removed in expectation than the uncorrupted

samples, i.e., E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|. Further, for an epoch s ∈ [T1]

there exists a constant C > 0 such that if ∥M(S(s))− I∥2 ≥ C α log(1/α), then with probability

1−O(1/ log2 d), the s-th epoch terminates after O(log d) iterations and outputs S(s+1) such

that ∥M(S(s+1))− I∥2 ≤ 0.98∥M(S(s))− I∥2.

Lemma A.5.3 is a combination of Lemma A.5.4 and Lemma A.5.5. We state the technical

lemmas and subsequently provide the proofs.

Lemma A.5.4. For an epoch s and an iteration t such that λ(s) > Cα log(1/α), λ(s)t > 0.5λ
(s)
0 ,

and n(s) > 3n/4, if n ≳ B2(logB)d3/2 log(1/δ)
εα

and |S(s)
t ∩Sgood| ≥ (1−10α)n then with probability

1−O(1/ log3 d), the conditions in Eqs. (A.11) and (A.12) hold. When these two conditions hold

we have E|S(s)
t \ S

(s)
t+1 ∩ Sgood| ≤ E|S(s)

t \ S
(s)
t+1 ∩ Sbad|. If n ≳ B2(logB)d3/2 log(1/δ)

εα
, ψ(s)

t > 1
5.5
λ
(s)
t ,
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and n(s) > 3n/4, then we have with probability 1 − O(1/ log3 d),
〈
M(S

(s)
t+1)− I, U

(s)
t

〉
≤

0.76
〈
M(S

(s)
t )− I, U

(s)
t

〉
.

Lemma A.5.5. For an epoch s and for all t = 0, 1, · · · , T2 = O(log d) if Lemma A.5.4 holds,

n(s) > 3n/4, and n ≳ B2(logB)d3/2 log(1/δ)
εα

, then we have ∥M(S(s+1))− I∥2 ≤ 0.98∥M(S(s))− I∥2
with probability 1−O(1/ log2 d).

A.5.3.1 Proof of Lemma A.5.4

Proof of Lemma A.5.4. To prove that we make progress for each iteration, we first show

our dataset satisfies regularity conditions in Eqs. (A.11) and (A.12) that we need for DP-

1Dfilter. Following Lemma A.5.6 implies with probability 1− 1/(log3 d), our scores satisfies

the regularity conditions needed in Lemma 2.3.9.

Lemma A.5.6. For each epoch s and iteration t, under the hypotheses of Lemma A.5.4, with

probability 1−O(1/ log3 d), we have

1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000 (A.11)

1

n

∑
i∈Sgood∩S

(s)
t

(τi − 1) ≤ ψ/1000 , (A.12)

where ψ ≜ 1
n

∑
i∈S(s)

t
(τi − 1).

Then by Lemma 2.3.9 our DP-1Dfilter gives us a threshold ρ such that

∑
i∈Sgood∩T2α

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} ≤

∑
i∈Sbad∩T2α

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} .

Conditioned on the hypotheses and the claims of Lemma 2.3.9, according to our filter

rule from Algorithm 6, we have

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| =

∑
i∈Sgood∩T2α

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ}
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and

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad| =

∑
i∈Sbad∩T2α

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} .

This implies E|(S(s)
t \S

(s)
t+1)∩Sgood| ≤ E|(S(s)

t \S
(s)
t+1)∩Sbad|. At the same time, Lemma 2.3.9

gives us a ρ such that with probability 1−O(log3 d)

1

n

∑
i∈S(s)

t+1

(τi − 1)− 2α ≤ 1

n

∑
τi≤ρ

(τi − 1) ≤ 3

4
· 1
n

∑
i∈S(s)

t

(τi − 1) .

Hence, we have〈
M(S

(s)
t )− I, U

(s)
t

〉
−
〈
M(S

(s)
t+1)− I, U

(s)
t

〉
=

1

n

∑
i∈S(s)

t \S(s)
t+1

(τi − 1)

≥ 1

4n

∑
i∈S(s)

t

(τi − 1)− 2α

(a)

≥ 1

4
· 998
1000

〈
M(S

(s)
t )− I, U

(s)
t

〉
,

where (a) follows from our assumption on λt and stopping criteria. Rearranging the terms

completes the proof.

A.5.3.2 Proof of Lemma A.5.6

Proof of Lemma A.5.6. First of all, Lemma A.6.9, Lemma A.6.10 and Lemma A.6.11 gives

us following Lemma A.5.7, which basically shows with enough samples, we can make sure the

noises added for privacy guarantees are small enough with probability 1−O(1/ log3 d).

Lemma A.5.7. For α ∈ (0, 0.5), if n ≳ B2(logB)d3/2 log(1/δ)
εα

and n(s) > 3n/4 then we have with

probability 1−O(1/ log3 d), following conditions simultaneously hold:

1. ∥µ(s)
t − µ(S

(s)
t )∥22 ≤ 0.001α log 1/α

2. |ψ(s)
t −

〈
M(S

(s)
t )− I, U

(s)
t

〉
| ≤ 0.001α log 1/α
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3.
∣∣∣λ(s)t − ∥M(S

(s)
t )− I∥2

∣∣∣ ≤ 0.001α log 1/α

4.
∣∣λ(s) − ∥M(S(s))− I∥2

∣∣ ≤ 0.001α log 1/α

5.
∥∥∥M(S

(s)
t+1)− Σ

(s)
t

∥∥∥
2
≤ 0.001α log 1/α

6. ∥µ(s) − µ(S(s))∥22 ≤ 0.001α log 1/α

Now under above conditions, since λ(s)1 > Cα log 1/α, we have ∥M(S
(s)
t )− I∥2 > 0.5(C −

0.002)α log 1/α. Using the fact that µ(S(s)
t ) = (1/n)

∑
i∈S(s)

t
xi, we also have

1

n

∑
i∈S(s)

t

(τi − 1)

=
1

n

∑
i∈S(s)

t

〈(
xi − µ(s)

t

)(
xi − µ(s)

t

)⊤
− I, U

(s)
t

〉

=
1

n

∑
i∈S(s)

t

〈(
xi − µ(S(s)

t )
)(

xi − µ(S(s)
t )
)⊤
− I, U

(s)
t

〉

+
|S(s)

t |
n

〈(
µ(S

(s)
t )− µ(s)

t

)(
µ(S

(s)
t )− µ(s)

t

)⊤
, U

(s)
t

〉
=

〈
M(S

(s)
t )− I, U

(s)
t

〉
+
|S(s)

t |
n

〈(
µ(S

(s)
t )− µ(s)

t

)(
µ(S

(s)
t )− µ(s)

t

)⊤
, U

(s)
t

〉
.

Thus, from the first and the second claims in Lemma A.5.7, we have

|ψ − ψ(s)
t | ≤ 0.002 α log 1/α . (A.13)
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For an epoch s and an iteration t, since αn ≤ Sgood ∩ T2α ∩ S(s)
t ≤ 2αn, we have

1

n

∑
i∈Sgood∩T2α∩S

(s)
t

τi =
1

n

∑
i∈Sgood∩T2α∩S

(s)
t

〈
(xi − µ(s)

t )(xi − µ(s)
t )⊤, U

(s)
t

〉
(a)

≤ 2

n

∑
i∈Sgood∩T2α∩S

(s)
t

〈
(xi − µ)(xi − µ)⊤, U (s)

t

〉
+

2|Sgood ∩ T2α ∩ S(s)
t |

n

〈
(µ− µ(s)

t )(µ− µ(s)
t )⊤, U

(s)
t

〉
(b)

≤ O(α log 1/α) + 4α
〈
(µ− µ(s)

t )(µ− µ(s)
t )⊤, U

(s)
t

〉
≤ O(α log 1/α) + 4α∥µ(s)

t − µ∥22

≤ O(α log 1/α) + 4α
(
∥µ− µ(S(s)

t )∥2 + ∥µ(S(s)
t )− µ(s)

t ∥2
)2

(c)

≤ O (α log 1/α) + 4α

(
O
(
α
√
log 1/α

)
+

√
α
(
O (α log 1/α) + ∥M(S

(s)
t )− I∥2

)
+ ∥µ(S(s)

t )− µ(s)
t ∥2

)2

≤ O(α log 1/α) + 8α2
(
∥M(S

(s)
t )− I∥2 +O (α log 1/α)

)
+O(8α3 log 1/α) + 8α2 log 1/α

(d)

≤ 1

1000

(
∥M(S

(s)
t )− I∥2 − 0.001 α log 1/α

5.5
− 0.002 α log 1/α

)

≤ ψ
(s)
t − 0.002 α log 1/α

1000

≤ ψ

1000
,

where (a) follows from the fact that for any vector x, y, z, we have (x − y)(x − y)⊤ ⪯

2(x−z)(x−z)⊤+2(y−z)(y−z)⊤, (b) follows from Lemma A.6.4, (c) follows from Lemma A.6.7,

(d) follows from our choice of large constant C, and in the last inequality we used Eq. (A.13).
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Similarly we have

1

n

∑
i∈Sgood∩S

(s)
t

(τi − 1)

=
1

n

∑
i∈Sgood∩S

(s)
t

〈
(xi − µ(s)

t )(xi − µ(s)
t )⊤ − I, U

(s)
t

〉
=

1

n

∑
i∈Sgood∩S

(s)
t

〈(
xi − µ(Sgood ∩ S(s)

t )
)(

xi − µ(Sgood ∩ S(s)
t )
)⊤
− I, U

(s)
t

〉

+
|Sgood ∩ S(s)

t |
n

〈(
µ(Sgood ∩ S(s)

t )− µ(s)
t

)(
µ(Sgood ∩ S(s)

t )− µ(s)
t

)⊤
, U

(s)
t

〉
(a)

≤ O (α log 1/α) +
∥∥∥µ(Sgood ∩ S(s)

t )− µ(s)
t

∥∥∥2
2

≤ O (α log 1/α) +
(∥∥∥µ(Sgood ∩ S(s)

t )− µ
∥∥∥
2
+
∥∥∥µ− µ(S(s)

t )
∥∥∥
2

)2
+ 0.001 α log 1/α

(b)

≤ O (α log 1/α) +

(
O(α

√
log 1/α) +

√
α(∥M(S

(s)
t )− I∥2 +O(α log 1/α))

)2

+ 0.001 α log 1/α

≤ O (α log 1/α) + α
(
∥M(S

(s)
t )− I∥2 +O (α log 1/α)

)
+O(α2 log 1/α) + +0.001 α log 1/α

(c)

≤ 1

1000

(
∥M(S

(s)
t )− I∥2 − 0.001 α log 1/α

5.5
− 0.002 α log 1/α

)

≤ ψ
(s)
t − 0.002 α log 1/α

1000

≤ ψ

1000
,

where (a) follows from Lemma A.6.4, (b) follows from Lemma A.6.5 and Lemma A.6.7 and

(c) follows from our choice of large constant C.

A.5.3.3 Proof of Lemma A.5.5

Proof of Lemma A.5.5. Under the conditions of Lemma A.5.7, we have picked n large enough

such that with probability 1−O(1/ log3 d), we have

∥Σ(s)
t − I∥2 ≈0.01 ∥M(S

(s)
t )− I∥2 .
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By Lemma A.5.4, we now have〈
M(S

(s)
t )− I, U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t−1)− I, U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
1 )− I, U

(s)
t

〉
≤ 0.76∥M(S

(s)
1 )− I∥2 . (A.14)

Since λ(s)1 > Cα log 1/α, we have ∥M(S
(s)
t )− I∥2 > 0.5(C − 0.002)α log 1/α. Combining the

above inequality and the fifth claim of Lemma A.5.7 together, we have〈
Σ

(s)
t − I, U

(s)
t

〉
≤
〈
M(S

(s)
t )− I, U

(s)
t

〉
+ ∥Σ(s)

t −M(S
(s)
t )∥2 ≤ 0.77∥M(S

(s)
1 )− I∥2 .

By Lemma A.6.1, we have M(S
(s)
t ) − I ⪯ M(S

(s)
1 ) − I. by our choice of α(s), we have

α(s)
(
M(S

(s)
t+1)− I

)
⪯ 1

100
I and α(s)

(
Σ

(s)
t − I

)
⪯ 1

100
I. Therefore, by Lemma A.6.13, we have∥∥∥∥∥

T2∑
t=1

Σ
(s)
t − I

∥∥∥∥∥
2

≤
T2∑
t=1

〈
Σ

(s)
t − I, U

(s)
t

〉
+ α(s)

T2∑
t=0

〈
U

(s)
t ,
∣∣∣Σ(s)

t − I
∣∣∣〉 ∥Σ(s)

t − I∥2 +
log(d)

α(s)

(a)

≤
T2∑
t=1

〈
Σ

(s)
t − I, U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,
∣∣∣Σ(s)

t − I
∣∣∣〉+ 200 log(d)∥M(S

(s)
1 )− I∥2

where (a) follows from our choice of α(s) and C. By Lemma A.6.6, M(S
(s)
t )−I ⪰ −c1α log 1/α·I

for t = 1, 2, · · · , T2, we have

|M(S
(s)
t )− I| ⪯M(S

(s)
t )− I+ 2c1α log 1/α I,

and hence 〈
U

(s)
t ,
∣∣∣M(S

(s)
t )− I

∣∣∣〉 ≤ 〈U (s)
t ,M(S

(s)
t )− I

〉
+ 2c1α log 1/α

Meanwhile, we have

M(S
(s)
t+1)− I− ∥Σ(s)

t −M(S
(s)
t )∥2 I ⪯ Σ

(s)
t − I ⪯M(S

(s)
t+1)− I+ ∥Σ(s)

t −M(S
(s)
t )∥2 I .
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Hence,

|Σ(s)
t − I| ⪯M(S

(s)
t )− I+ (3∥Σ(s)

t −M(S
(s)
t )∥2 + 2c1α log 1/α) I

Together with Eq. (A.14), we have〈
U

(s)
t ,
∣∣∣Σ(s)

t − I
∣∣∣〉

≤
〈
U

(s)
t ,M(S

(s)
t )− I

〉
+ 3∥Σ(s)

t −M(S
(s)
t )∥2 + 2c1α log 1/α

≤ 0.79
∥∥∥M(S

(s)
1 )− I

∥∥∥
2
+ 2c1α log 1/α .

By Lemma A.6.6, we have M(S
(s)
t )− I ⪰ −c1α log 1/α I. Also, we know M(S

(s)
t )− I ⪯

M(S
(s)
1 )− I. Then we have

∥∥∥M(S
(s)
T2
)− I

∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

M(S
(s)
t )− I

∥∥∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

Σ
(s)
t − I

∥∥∥∥∥
2

+ 0.001 α log 1/α

≤ 1

T2

(
T2∑
t=1

〈
Σ

(s)
t − I, U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,
∣∣∣Σ(s)

t − I
∣∣∣〉+ 200 log(d)∥M(S

(s)
1 )− I∥2

)
+ 0.001 α log 1/α

≤ 0.79∥M(S
(s)
1 )− I∥2 + 2c1α log 1/α +

200 log(d)

T2
∥M(S

(s)
1 )− I∥2 + 0.001 α log 1/α

≤ 0.98 ∥M(S
(s)
1 )− I∥2 ,

where the last inequality follows from our assumption that λ(s)0 > Cα log 1/α, and conditions

of Lemma A.5.7 hold and we have ∥M(S
(s)
t )− I∥2 > 0.5(C − 0.002)α log 1/α.

A.6 Technical lemmas

A.6.1 Lemmata for sub-Gaussian regularity from [73]

Lemma A.6.1 ([73, Lemma 3.4] ). If S ′ ⊂ S, then M(S ′) ⪯M(S).
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Definition A.6.2 ([73, Definition 4.1] ). Let D be a distribution with mean µ ∈ Rd and

covariance I. For 0 < α < 1/2, we say a set of points S = {X1, X2, · · · , Xn} is α-subgaussian

good with respect to µ ∈ Rd if following inequalities are satisfied:

• ∥µ(S)− µ∥2 ≲ α
√

log 1/α and
∥∥∥ 1
|S|
∑

i∈S (Xi − µ(S)) (Xi − µ(S))⊤ − I
∥∥∥
2
≲ α log 1/α.

• for any subset T ⊂ S so that |T | = 2α|S|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

Xi − µ

∥∥∥∥∥
2

≲
√

log 1/α and

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ(S)) (Xi − µ(S))⊤ − I

∥∥∥∥∥
2

≲ log 1/α .

Lemma A.6.3 ([73, Lemma 4.1] ). A set of i.i.d. samples from an identity covariance

sub-Gaussian distribution of size n = Ω
(

d+log 1/δ
α2 log 1/α

)
is α-subgaussian good with respect to µ

with probability 1− δ.

Lemma A.6.4 ([73, Fact 4.2] ). Let S be an α-corrupted sub-Gaussian dataset under

Assumption 1. If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S

such that |T | ≤ 2α|S|, we have for any unit vector v ∈ Rd

1

|S|
∑
Xi∈T

⟨(Xi − µ) , v⟩2 ≲ α log 1/α .

For any subset T ⊂ S such that |T | ≥ (1− 2α)|S|, we have∥∥∥∥∥ 1

|S|
∑
i∈T

(xi − µ)(xi − µ)⊤ − I

∥∥∥∥∥
2

≲ α log 1/α and ,∥∥∥∥∥ 1

|S|
∑
i∈T

(xi − µ(T ))(xi − µ(T ))⊤ − I

∥∥∥∥∥
2

≲ α log 1/α

Lemma A.6.5 ([73, Corollary 4.3] ). Let S be an α-corrupted sub-Gaussian dataset under

Assumption 1. If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S

such that |T | ≤ 2α|S|, we have∥∥∥∥∥ 1

|S|
∑
Xi∈T

(Xi − µ)

∥∥∥∥∥
2

≲ α
√

log 1/α .
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For any subset T ⊂ S such that |T | ≥ (1− 2α)|S|, we have

∥µ(T )− µ∥2 ≲ α
√

log 1/α .

Lemma A.6.6 ([73, Lemma 4.5] ). Let S be an α-corrupted sub-Gaussian dataset under

Assumption 1. If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S

such that |T ∩ Sgood| ≥ (1− 2α)|S|, then there is some universal constant c1 such that

1

|S|
∑
i∈T

(xi − µ(T )) (xi − µ(T ))⊤ ⪰ (1− c1α log 1/α)I .

Lemma A.6.7 ([73] Lemma 4.6 ). Let S be an α-corrupted sub-Gaussian dataset under

Assumption 1. If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S

such that |T ∩ Sgood| ≥ (1− 2α)|S|, we have

∥µ(T )− µ∥2 ≤
1

1− α
·
(√

α (∥M(T )− I∥2 +O (α log 1/α)) +O
(
α
√

log 1/α
))

.

A.6.2 Auxiliary Lemmas on Laplace and Gaussian mechanism

Lemma A.6.8 (Theorem A.1 in [79]). Let ε ∈ (0, 1) be arbitrary. For c2 ≥ 2 ln(1.25/δ), the

Gaussian Mechanism with parameter σ2 ≥ c2∆2f/ε is (ε, δ)-differentially private.

Lemma A.6.9. Let Y ∼ Lap(b). Then for all h > 0, we have P(|Y | ≥ hb) = e−h.

Lemma A.6.10 (Tail bound of χ-square distribution [203]). Let xi ∼ N (0, σ2) for i =

1, 2, · · · , d. Then for all ζ ∈ (0, 1), we have P(∥X∥2 ≥ σ
√
d log(1/ζ)) ≤ ζ.

Lemma A.6.11 ([190, Corollary 2.3.6] ). Let Z ∈ Rd×d be a matrix such that Zi,j ∼ N (0, σ2)

for i ≥ j and Zi,j = Zj,i for i < j. For ∀ζ ∈ (0, 1), then with probability 1 − ζ we have

∥Z∥2 ≤ σ
√
d log(1/ζ).

Lemma A.6.12 (Accuracy of the histogram using Gaussian Mechanism). Let f : X n → RS

be a histogram over K bins. For any dataset D ∈ X n and ε, Gaussian Mechanism is an

(ε, δ)-differentially private algorithm M(D) such that given

with probability 1− ζ we have

∥M(D)− f(D)∥∞ ≤ O(

√
log(K/ζ) log(1/δ)

εn
) .
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Proof. First notice that the ℓ2 sensitivity of histogram function f is
√
2/n. Thus, by

Lemma A.6.8, by adding noise N (0, (
2
√

2 log(1.25/δ)

nε
)2) to each entry of f , we have a (ε, δ)

differentially private algorithm. Since Gaussian tail bound implies that Px∼N (0,σ2)[x ≥

Ω(
√

log(K/η)σ)] ≤ η/K, we have that with probability 1 − η, the ℓ∞ norm of the added

noise is bounded by O(
√

log(1/δ) log(K/η)

nε
). This concludes the proof.

A.6.3 Analysis of ∥M(S
(s)
t )− I∥2 shrinking

For any symmetric matrix A =
∑d

i=1 λiviv
⊤
i , we let |A| denote |A| =

∑d
i=1 |λi|viv⊤i .

Lemma A.6.13 (Regret bound, Special case of [8, Theorem 3.1]). Let

Ut =
exp(α

∑t−1
k=1(Σk − I))

Tr(exp(α
∑t−1

k=1(Σk − I)))
,

and α satisfies α(Σt − I) ⪯ I for all k ∈ [T ], then for all U ⪰ 0, Tr(U) = 1, it holds that
T∑
t=1

⟨(Σt − I), U − Ut⟩ ≤ α
T∑
t=1

⟨|(Σt − I), Ut|⟩ · ∥(Σt − I)∥2 +
log d

α
.

Rearranging terms, and taking a supremum over U , we obtain that

∥
T∑
t=1

(Σt − I)∥2 ≤
T∑
t=1

⟨Ut, (Σt − I)⟩+ α
T∑
t=1

⟨|(Σt − I), Ut|⟩ · ∥(Σt − I)∥2 +
log d

α
.

A.7 Exponential time DP robust mean estimation of sub-Gaussian and heavy
tailed distributions

In this section, we give a self-contained proof of the privacy and utility of our exponential

time robust mean estimation algorithm for sub-Gaussian and heavy tailed distributions. The

proof relies on the resilience property of the uncorrupted data as shown in the following

lemmas.

Lemma A.7.1 (Lemma 10 in [186]). If a set of points {xi}i∈S lying in Rd is (σ, α)-resilient

around a point µ, then

∥ 1

|T ′|
∑
i∈T ′

(xi − µ)∥2 ≤
2− α
α

σ.

for all sets T ′ of size at least α|S|.
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Lemma A.7.2 (Finite sample resilience of sub-Gaussian distributions [217, Theorem G.1]).

Let Sgood be a set of i.i.d. points from a sub-Gaussian distribution D with a parameter Id.

Given that |Sgood| = Ω((d+log(1/ζ))/(α2 log 1/α) ), Sgood is (α
√
log(1/α), α)-resilient around

its mean µ with probability 1− ζ.

Lemma A.7.3 (Finite sample resilience of heavy-tailed distributions [217, Theorem G.2]).

Let Sgood be a set of i.i.d. samples drawn from distribution D whose mean and covariance are

µ,Σ respectively, and that Σ ⪯ I. Given that |S| = Ω(d/(ζα)), there exists a constant cζ that

only depends on ζ such that Sgood is (cζ
√
α, α)-resilient around µ with probability 1− ζ.

A.7.1 Case of heavy-tailed distributions and a proof of Theorem 9

Lemma A.8.1 ensures that DPrange-ht returns samples in a bounded support of Euclidean

distance
√
dB/2 with B = 50/

√
α where (1− 2α)n samples are uncorrupted (αn is corrupted

by adversary and αn can be corrupted by the pre-processing step). For a (cζ
√
3α, 3α)-resilient

dataset, we first show that R(S) is robust against corruption.

Lemma A.7.4 (α-corrupted data has small R(S)). Let S be the set of 2α-corrupted data.

Given that n = Ω(d/(ζα)), with probability 1− ζ, R(S) ≤ cζ
√
3α.

This follows immediately by selecting S ′ to be the uncorrupted (1− 2α) fraction of the

dataset and applying (cζ
√
3α, 3α)-resilience. After pre-processing, we have that ∥xi − x̄∥2 ≤

B
√
d/2, and then clearly R(·) has sensitivity ∆R ≤ B

√
d/n.

Lemma A.7.5 (Sensitivity and Privacy of R̂(S)). Given that R̂(S) = R(S)+Lap(3B
√
d

nε
), R̂(S)

is (ε/3, 0)-differentially private. Further, with probability 1−δ/3, |R̂(S)−R(S)| ≤ 3B
√
d log(3/δ)
nε

.

In the algorithm, we first compute R̂(S). If R̂(S) ≥ 2cζ
√
α, we stop and output ∅.

Otherwise, we use exponential mechanism with score function d(µ̂, S) to find an estimate µ̂.

We prove the privacy guarantee of our algorithm as follows.

Lemma A.7.6 (Privacy). Algorithm 8 is (ε, δ)-differentially private if n ≥ 6B
√
d log(3/δ)/(cζε

√
α).
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Proof. We consider neighboring datasets S, S ′ under the following two scenario

1. R(S) > 3cζ
√
α

In this case, given that n ≥ 6B
√
d log(3/δ)
cζ
√
αε

, we have R̂(S) > 2cζ
√
α and the output of the

algorithm A(S) = ∅ with probability at least 1− δ/3, and A(S ′) = ∅ with probability

at least 1− δ/3. Thus, for any set Q, P[A(S) ∈ Q] ≤ P[A(S ′) ∈ Q] + δ/3.

2. R(S) ≤ 3cζ
√
α

Lemma A.7.7 (Sensitivity of d(µ̂, S)). Given that R(S) ≤ 3cζ
√
α, for any neighboring

dataset S ′, |d(µ̂, S)− d(µ̂, S ′)| ≤ 12cζ/(n
√
α).

In this case, the privacy guarantee of R̂(S) yields that P[R̂(S) ∈ Q] ≤ exp(ε/3) ·

P[R̂(S ′) ∈ Q]. Lemma A.7.7 yields that P[µ̂(S) ∈ Q] ≤ exp(ε) · P[µ̂(S ′) ∈ Q]. A

simple composition of the privacy guarantee with DPrange-ht(·) and the exponential

mechanism gives that

P[(R̂(S), µ̂(S)) ∈ Q] ≤ exp(ε) · P[(R̂(S ′), µ̂(S ′)) ∈ Q] + δ/3

This implies that P[A(S) ∈ Q] ≤ exp(ε) · P[A(S ′) ∈ Q] + δ/3.

Lemma A.7.8 (Utility of the algorithm). For an 2α-corrupted dataset S, Algorithm 8 achieves

∥µ̂− µ∗∥2 ≤ cζ
√
α with probability 1− ζ, if n = Ω(d/(αζ) + (d log(dR/α) + log(1/ζ)/(εα)).

Proof of Lemma A.7.8. Following the proof strategy of §A.1, we use the following lemma

showing that d(µ̂, S) is a good approximation of ∥µ̂− µ∗∥2.

Lemma A.7.9 (d(µ, S) approximates ∥µ−µ∗∥). Let S be the set of 2α-corrupted data. Given

that n = Ω(d/(ζα)), with probability 1− ζ,∣∣ d(µ̂, S)− ∥µ̂− µ∗∥2
∣∣ ≤ 7cζ

√
α .
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This implies that the exponential mechanism achieves the following bounds.

P(∥µ̂− µ∗∥ ≤ cζ
√
α) ≥ 1

A
e−

εαn
3 Vol(cζ

√
α, d), and

P(∥µ̂− µ∗∥ ≥ 22cζ
√
α) ≤ 1

A
e−

5εαn
8 (4R)d ,

where A denotes the normalizing factor for the exponential mechanism and Vol(r, d) is the

volume of a ball of radius r in d dimensions. It follows that

log
( P(∥µ̂− µ∗∥2 ≤ cζ

√
α)

P(∥µ̂− µ∗∥2 ≥ 22cζ
√
α)

)
≥ 7

24
εαn− C d log(dR/α)

≥ log(1/ζ) ,

for n = Ω((d log(dR/α) + log(1/ζ))/(εα)).

A.7.1.1 Proof of Lemma A.7.7

Since R(S) ≤ 3cζ
√
α, define Sgood as the minimizing subset in Definition 2.4.2 such that

R(S) = max
T⊂Sgood,|T |=(1−α)|Sgood|

∥µ(T )− µ(Sgood)∥2 .

By this definition of Sgood and Lemma A.7.1,

|v⊤(µ(Sgood ∩ T v)− µ(Sgood))| ≤ 6cζ
√
1/α, and

|v⊤(µ(Sgood ∩ Bv)− µ(Sgood))| ≤ 6cζ
√
1/α.

Therefore,

min
i∈Sgood∩T v

|v⊤(xi − µ(Sgood))| ≤ |v⊤(µ(Sgood ∩ T v)− µ(Sgood))| ≤ 6cζ
√
1/α,

and similarly

min
i∈Sgood∩Bv

|v⊤(xi − µ(Sgood))| ≤ |v⊤(µ(Sgood ∩ Bv)− µ(Sgood))| ≤ 6cζ
√

1/α
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This implies

min
i∈Sgood∩T v

v⊤xi − max
i∈Sgood∩Bv

v⊤xi ≤ 12cζ
√

1/α . (A.15)

This implies that distribution of one-dimensional points S(v) = {v⊤xi} is dense at the boundary

of top and bottom α quantiles, and hence cannot be changed much by changing one entry.

Formally, consider a neighboring dataset S ′ (and the corresponding S ′
(v)) where one point xi in

M(v)(S) is replaced by another point x̃i. If v⊤x̃i ∈ [ maxi∈Sgood∩Bv v⊤xi , mini∈Sgood∩T v v⊤xi ],

then Eq. (A.15) implies that this only changes the mean by 6cζ/(
√
αn). Otherwise,Mv(S ′)

will have xi replaced by either argmini∈Sgood∩T v v⊤xi or argmaxi∈Sgood∩Bv v⊤xi. In both cases,

Eq. (A.15) implies that this only changes the mean by 12cζ/(
√
αn). The other case of when

the replaced sample xi ∈ S is not inMv(S) follows similarly. From this, we upper bounds

the maximum difference between S and S ′ when projected on v, that is∣∣v⊤ (µ(Mv(S))− µ(Mv(S ′)))
∣∣ ≤ 12cζ√

αn
.

This implies the sensitivity of d(µ, S) is bounded by 6cζ/(
√
αn):

|d(µ, S)− d(µ, S ′)| =
∣∣∣ max

v∈Sd−1
v⊤µ(M v(S)) − max

ṽ∈Sd−1
ṽ⊤µ(M v(S ′))

∣∣∣
≤ max

v∈Sd−1

∣∣ v⊤(µ(M v(S)) − µ(M v(S ′)) )
∣∣ ≤ 12cζ√

αn

A.7.1.2 Proof of Lemma A.7.9

First we show |v⊤ (µ(Mv)− µ∗) | ≤ 7cζ
√
α. Notice that |Sgood ∩ T v| ≤ 3α|S|, and |Sgood ∩

Bv| ≤ 3α|S|. By the (cζ
√
3α, 3α)-resilience property, we have |v⊤(µ(Sgood ∩ T v) − µ∗)| ≤

cζ
√

3/α, and |v⊤(µ(Sgood ∩ Bv)− µ∗)| ≤ cζ
√

3/α. Since |Sgood ∩Mv| ≥ (1− 8α)|Sgood|, by

the (cζ
√
8α, 8α)-resilience property,

|v⊤(µ(Sgood ∩Mv)− µ∗)| ≤ cζ
√
8α .

Since T v, Bv are the largest and smallest 3αn points respectively and |Sbad| ≤ 2αn, we get

|v⊤(µ(Sbad ∩Mv)− µ∗)| ≤ 2cζ
√
3/α.
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Combining Sgood ∩Mv and Sbad ∩Mv we get

|v⊤(µ(Mv)− µ∗)|

≤ |Sbad ∩Mv|
|Mv|

|v⊤(µ(Sbad ∩Mv)− µ∗)|+ |µ(Sgood ∩Mv|
|Mv|

|v⊤(µ(Sgood ∩Mv)− µ∗)|

≤ 7cζ
√
α.

Finally we get that∣∣ d(µ̂, S)− ∥µ̂− µ∗∥2
∣∣ (a)= ∣∣∣∣ max

v∈Sd−1

∣∣v⊤ (µ(M(v))− µ̂
)∣∣− max

v∈Sd−1
|v⊤(µ̂− µ∗)|

∣∣∣∣
(b)

≤ max
v∈Sd−1

∣∣v⊤ (µ(M(v))− µ∗)∣∣
≤ 7cζ

√
α,

where (a) holds by the definition of the distance :

∥µ− µ∗∥2 = max
v∈Sd−1

|v⊤(µ− µ∗)|,

and (b) holds by triangle inequality.

A.7.2 Case of sub-Gaussian distributions and a proof of Theorem 8

Th proof is analogous to the previous section, we only state the lemmas that differ. DPrange

returns a hypercube x̄+ [−B/2, B/2]d that includes all uncorrupted data points with a high

probability.

Lemma A.7.10 (α-corrupted data has small R(S)). Let S be the set of α-corrupted data.

Given that n = Ω(d+log(1/ζ)
α2 log 1/α

), with probability 1− ζ, R(S) ≤ 3α
√

log(1/3α).

Lemma A.7.11 (Privacy). Algorithm 8 is (ε, δ)-differentially private if n ≥ 3B
√
d log(3/δ)/(εα

√
log(1/α)).

This follows from the following lemma.

Lemma A.7.12 (Sensitivity of d(µ̂, S)). Given that R(S) ≤ 3α
√
log(1/α), for any neigh-

boring dataset S ′, |d(µ̂, S)− d(µ̂, S ′)| ≤ 12
√

log 1/α/n.
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Lemma A.7.13 (d(µ̂, S) approximates ∥µ̂ − µ∗∥). Let S be the set of α-corrupted data.

Given that n = Ω(d+log(1/ζ)
α2 log 1/α

), with probability 1− ζ,

∣∣ d(µ̂, S)− ∥µ̂− µ∗∥2
∣∣ ≤ 14α

√
log 1/α .

This implies the following utility bound.

Lemma A.7.14 (Utility of the algorithm). For an α-corrupted dataset S, Algorithm 8

achieves ∥µ̂−µ∗∥2 ≤ α
√
log 1/α with probability 1−ζ, if n = Ω((d+log(1/ζ))/(α2 log(1/α))+

(d log(dR/α) + log(1/ζ)/(εα)).

A.8 Algorithm and analysis for covariance bounded distributions

Algorithm 18: Differentially private range estimation for covariance bounded

distributions (DPrange-ht) [135, Algorithm 2]
Input: S = {xi}ni=1, R, ε, δ, ζ

1 Randomly partition the dataset S = ∪ℓ∈[m]S
(ℓ) with m = 200 log(2/ζ)

2 x̄(ℓ) ←DPrange(S(ℓ), R, ε/m, δ/m, σ = 40) for all ℓ ∈ [m]

3 x̂j ← median({x̄(ℓ)j }ℓ∈[m]) for all j ∈ [d]

Output: (x̂, B = 50/
√
α)

Lemma A.8.1 (Analysis of DPrange-ht). DPrange-ht is (ε, δ)-differentially private. Un-

der Assumption 2 and for α ∈ (0, 0.01), if n = Ω((1/α) log(1/ζ)+(
√
d log(1/δ) log(1/ζ)/ε)min{log(dR), log(d/δ)}),

DPrange-ht returns a ball B√dB/2(x̄) of radius
√
dB/2 centered at x̄ that includes (1−2α)n

uncorrupted samples where B = 50/
√
α with probability 1− ζ.

A.8.1 Range estimation with DPrange-ht and a proof of Lemma A.8.1

We first show that applying the private histogram to each coordinate provides a robust

estimate of the range, but with a constant probability 0.9.

Lemma A.8.2 (Robustness of a single private histogram). Under the α-corruption model

of Assumption 2, if n = Ω((
√
d log(1/δ)/ε)min{log(dR), log(d/δ}}), for α ∈ (0, 0.01),
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DPrange in Algorithm 14 with a choice of σ = 40 and B = 120 returns intervals {Ij}dj=1 of

size |Ij| = 240 such that µj ∈ Ij with probability 0.9 for each j ∈ [d].

Proof of Lemma A.8.2. The proof is analogous to §A.2.1 and we only highlight the differences

here. By Lemma A.2.1 we know that |p̃k−p̂k| ≤ 0.01 with the assumption on n. The corruption

can change the normalized count in each bin by α ≤ 0.01 by assumption. It follows from

Chebyshev inequality that P(|xi,j − µj|2 > σ2) ≤ 1/σ2. It follows from (e.g. [135, Lemma

A.3]) that P(|{i : xi,j /∈ [µ− σ, µ+ σ]}| > (100/σ2)n) < 0.05. Hence the maximum bin has

p̃k ≥ 0.5(1 − 100/σ2) − 0.02 and the true mean is in the maximum bin or in an adjacent

bin. The largest non-adjacent bucket is at most 100/σ2 + 0.02. Hence, the choice of σ = 40

ensures that we find the µ within 3σ = 120.

Following [135, Algorithm 2], we partition the dataset into m = 200 log(2/ζ) subsets of

an equal size n/m and apply the median-of-means approach. Applying Lemma A.8.2, it is

ensured (e.g., by [135, Lemma A.4]) that more than half of the partitions satisfy that the

center of the interval is within 240 away from µ, with probability 1− ζ. Therefore the median

of those m centers is within 240 from the true mean in each coordinate. This requires the

total sample size larger only by a factor of log(d/ζ).

To choose a radius
√
dB/2 ball around this estimated mean that includes 1− α fraction

of the points, we choose B = 25/
√
α. Since ∥µ̂− µ∥2 ≤ 120

√
d≪

√
dB/2 for α ≤ 0.01, this

implies that we can choose
√
dB/2-ball around the estimated mean with B = 50/

√
α.

Let zi = I(∥xi − µ∥2 >
√
dB/2). We know that E[zi] = P[(∥xi − µ∥2 >

√
dB/2)] ≤

E[∥xi − µ∥22(2/dB2)] = (1/1250)α. Applying multiplicative Chernoff bound (e.g., in [135,

Lemma A.3]), we get |{i : ∥xi − µ∥2 ≤
√
dB/2}| ≥ 1 − (3/2500)α with probability 1 − ζ,

if n = Ω((1/α) log(1/ζ)). This ensures that with high probability, (1 − α) fraction of the

original uncorrupted points are included in the ball. Since the adversary can corrupt αn

samples, at least (1− 2α)n of the remaining good points will be inside the ball.
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A.8.2 Proof of Theorem 10

The proof of the privacy guarantee of Algorithm 19 follows analogously from the proof of the

privacy of PRIME and is omitted here. The accuracy guarantee follows form the following

theorem and Lemma A.8.1.

Theorem 27 (Analysis of accuracy of DPMMWfilter-ht). Let S be an α-corrupted

covariance bounded dataset under Assumption 2, where α ≤ c for some universal constant

c ∈ (0, 1/2). Let Sgood be α-good with respect to µ ∈ Rd. Suppose D = {xi ∈ B√dB/2(x̄)}ni=1

be the projected dataset. If n ≥ Ω̃
(

d3/2B2 log(1/δ)
ε

)
, then DPMMWfilter-ht terminates

after at most O(log dB2) epochs and outputs S(s) such that with probability 0.9, we have

|S(s)
t ∩ Sgood| ≥ (1− 10α)n and

∥µ(S(s))− µ∥2 ≲
√
α .

Moreover, each epoch runs for at most O(log d) iterations.
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Algorithm 19: Differentially private filtering with matrix multiplicative weights

(DPMMWfilter-ht) for distributions with bounded covariance
Input: S = {xi ∈ B√dB/2(x̄)}

n
i=1, α ∈ (0, 1), T1 = O(logB), T2 = O(log d), B ∈ R+, /2

(ε, δ)

1 Initialize S(1) ← [n], ε1 ← ε/(4T1), δ1 ← δ/(4T1), ε2 ← min{0.9, ε}/(4
√

10T1T2 log(4/δ)),

δ2 ← δ/(20T1T2), a large enough constant C > 0

2 for epoch s = 1, 2, . . . , T1 do

3 λ(s) ← ∥M(S(s))∥2 + Lap(2B2d/(nε1))

4 n(s) ← |S(s)|+ Lap(1/ε1)

5 if n(s) ≤ 3n/4 then terminate

6 if λ(s) ≤ C then
Output: µ(s) ← (1/|S(s)|)

(∑
i∈S(s) xi

)
+N (0, (2B

√
2d log(1.25/δ1)/(n ε1))

2Id×d)

7 α(s) ← 1/(100(0.1/C + 1.05)λ(s))

8 S
(s)
1 ← S(s)

9 for t = 1, 2, . . . , T2 do

10 λ
(s)
t ← ∥M(S

(s)
t )∥2 + Lap(2B2d/(nε2))

11 if λ(s)t ≤ 2/3λ
(s)
0 then

12 terminate epoch

13 else

14 Σ
(s)
t ←M(S

(s)
t ) +N (0, (2B2d

√
2 log(1.25/δ2)/(nε2))

2Id2×d2)

15 U
(s)
t ← (1/Tr(exp(α(s)

∑t
r=1(Σ

(s)
r )))) exp(α(s)

∑t
r=1(Σ

(s)
r ))

16 ψ
(s)
t ←

〈
M(S

(s)
t ), Ut

(s)
〉
+ Lap(2B2d/(nε2))

17 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

18 S
(s)
t+1 ← S

(s)
t

19 else

20 Z
(s)
t ← Unif([0, 1])

21 µ
(s)
t ← (1/|S(s)

t |)
(∑

i∈St
xi
)
+N (0, (2B

√
2d log(1.25/δ2)/(n ε2)Id×d)

2)

22 ρ
(s)
t ← DP-1Dfilter-ht(µ(s)t , U

(s)
t , α, ε2, δ2, S

(s)
t ) [Algorithm 20]

23 S
(s)
t+1 ← S

(s)
t \ {i | {τj = (xj − µ(s)t )⊤U

(s)
t (xj − µ(s)t )}

j∈S(s)
t

and τi ≥ ρ(s)t Z
(s)
t }.

24 S(s+1) ← S
(s)
t

Output: µ(T1)
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Algorithm 20: Differentially private 1D-filter DP-1Dfilter-ht
Input: µ, U , α ∈ (0, 1), target privacy (ε, δ), S = {xi ∈ BB√

d/2(x̄)}

1 Set τi ← (xi − µ)⊤U(xi − µ) for all i ∈ S

2 Set ψ̃ ← (1/n)
∑

i∈S τi + Lap(B2d/nε))

3 Compute a histogram over geometrically sized bins

I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B
2d)−1, 2log(B

2d)]

hj ←
1

n
· |{i ∈ S | τi ∈ [2−3+j, 2−2+j)}| , for all j = 1, · · · , 2 + log(B2d)

4 Compute a privatized histogram h̃j ← hj +N (0, (2
√

2d log(1.25/δ)/(|S|ε))2), for all

j ∈ [2 + log(B2d)]

5 Set τ̃j ← 2−3+j, for all j ∈ [2 + log(B2d)]

6 Find the largest ℓ ∈ [2 + log(B2d)] satisfying
∑

j≥ℓ(τ̃j − τ̃ℓ) h̃j ≥ 0.31ψ̃

Output: ρ = τ̃ℓ

A.8.2.1 Analysis of DPMMWfilter-ht and a proof of Theorem 27

Algorithm 19 is a similar matrix multiplicative weights based filter algorithm for distribu-

tions with bounded covariance. Similarly, we first state following Lemma A.8.3 and prove

Theorem 27 given Lemma A.8.3

Lemma A.8.3. Let S be an α-corrupted bounded covariance dataset under Assumption 2.

For an epoch s and an iteration t such that λ(s) > C, λ(s)t > 2/3λ
(s)
0 , and n(s) > 3n/4, if

n ≳ B2(logB)d3/2 log(1/δ)
ε

and |S(s)
t ∩Sgood| ≥ (1− 10α)n, then with probability 1−O(1/ log(d)3),

we have the condition in Eq. (A.16) holds. When this condition holds, we have more corrupted

samples are removed in expectation than the uncorrupted samples, i.e., E|(S(s)
t \S

(s)
t+1)∩Sgood| ≤

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad|. Further, for an epoch s ∈ [T1] there exists a constant C > 0 such

that if ∥M(S(s))∥2 ≥ C, then with probability 1−O(1/ log2 d), the s-th epoch terminates after

O(log d) iterations and outputs S(s+1) such that ∥M(S(s+1))∥2 ≤ 0.98∥M(S(s))∥2.
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Now we define d(s)t ≜ |(Sgood ∩ S(1)) \ S(s)
t |+ |S

(s)
t \ (Sgood ∩ S(1))|. Note that d(1)1 = αn,

and d(s)t ≥ 0. At each epoch and iteration, we have

E[d(s)t+1 − d
(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)t ] = E

[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

from the part 1 of Lemma A.8.3. Hence, d(s)t is a non-negative super-martingale. By optional

stopping theorem, at stopping time, we have E[d(s)t ] ≤ d
(1)
1 = αn. By Markov inequality, d(s)t

is less than 10αn with probability 0.9, i.e. |S(s)
t ∩ Sgood| ≥ (1− 10α)n. The desired bound in

Theorem 27 follows from Lemma A.8.11.

A.8.2.2 Proof of Lemma A.8.3

Lemma A.8.3 is a combination of Lemma A.8.4, Lemma A.8.5 and Lemma A.8.6. We state

the technical lemmas and subsequently provide the proofs.

Lemma A.8.4. For each epoch s and iteration t, under the hypotheses of Lemma A.8.3 then

with probability 1−O(1/ log3 d), we have

1

n

∑
i∈Sgood∩S

(s)
t

τi ≤ ψ/1000 , (A.16)

where ψ ≜ 1
n

∑
i∈S(s)

t
τi.

Lemma A.8.5. For each epoch s and iteration t, under the hypotheses of Lemma A.8.3, if

condition Eq. (A.16) holds, then we have E|S(s)
t \ S

(s)
t+1 ∩ Sgood| ≤ E|S(s)

t \ S
(s)
t+1 ∩ Sbad| and

with probability 1−O(1/ log3 d), and
〈
M(S

(s)
t+1), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t ), U

(s)
t

〉
.

Lemma A.8.6. For epoch s, suppose for t = 0, 1, · · · , T2 where T2 = O(log d), if Lemma A.8.5

holds, n ≳ B2(logB)d3/2 log(1/δ)
εα

, and n(s) > 3n/4, then we have ∥M(S(s+1))∥2 ≤ 0.98∥M(S(s))∥2
with probability 1−O(1/ log2 d).

A.8.2.3 Proof of Lemma A.8.4

Proof. By Lemma A.6.9, Lemma A.6.10 and Lemma A.6.11, we can pick n = Ω̃
(

B2d3/2 log
ε

)
such that with probability 1−O(1/ log3 d), following conditions simultaneously hold:
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1. ∥µ(s)
t − µ(S

(s)
t )∥22 ≤ 0.001

2. |ψ(s)
t −

〈
M(S

(s)
t ), U

(s)
t

〉
| ≤ 0.001

3.
∣∣∣λ(s)t − ∥M(S

(s)
t )∥2

∣∣∣ ≤ 0.001

4.
∣∣λ(s) − ∥M(S(s))∥2

∣∣ ≤ 0.001

5.
∥∥∥M(S

(s)
t+1)− Σ

(s)
t

∥∥∥
2
≤ 0.001

6. ∥µ(s) − µ(S(s))∥22 ≤ 0.001 .

Then we have

1

n

∑
i∈Sgood∩S

(s)
t

τi =
1

n

∑
i∈Sgood∩S

(s)
t

〈
(xi − µ(s)

t )(xi − µ(s)
t )⊤, U

(s)
t

〉
(a)

≤ 2

n

∑
i∈Sgood∩S

(s)
t

〈
(xi − µ(Sgood ∩ S(s)

t ))(xi − µ(Sgood ∩ S(s)
t ))⊤, U

(s)
t

〉

+
2|Sgood ∩ S(s)

t |
n

〈
(µ(Sgood ∩ S(s)

t )− µ(s)
t )(µ(Sgood ∩ S(s)

t )− µ(s)
t )⊤, U

(s)
t

〉
≤ 2

〈
M((Sgood ∩ S(s)

t ), U
(s)
t

〉
+ 2∥µ(s)

t − µ(Sgood ∩ S(s)
t )∥22

(b)

≤ 2 + 2
(
∥µ(s)

t − µ∥2 + ∥µ(Sgood ∩ S(s)
t )− µ∥2

)2
(c)

≤ 2 + 2

(
0.01 + 2

√
α∥M(S

(s)
t )∥2 + 3

√
α

)2

≤ 3 + 8α∥M(S
(s)
t )∥2 + 32α

(d)

≤ ψ
(s)
t − 0.002

1000

≤ ψ

1000
,

where (a) follows from the fact that for any vector x, y, z, we have (x − y)(x − y)⊤ ⪯

2(x− z)(x− z)⊤ + 2(y − z)(y − z)⊤, (b) follows from α-goodness of Sgood, (c) follows from

Lemma A.8.11 and (d) follows from our choice of large constant C and sample complexity n.
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A.8.2.4 Proof of Lemma A.8.5

Proof. Lemma A.8.4 implies with probability 1−O(1/ log3 d), our scores satisfies the condition

in Eq. (A.16). Then by Lemma A.8.7 our DP-1Dfilter-ht gives us a threshold ρ such that∑
i∈Sgood∩S

(s)
t

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} ≤

∑
i∈Sbad∩S

(s)
t

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} .

According to our filter rule from Algorithm 20, we have

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| =

∑
i∈Sgood∩S

(s)
t

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ}

and

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad| =

∑
i∈Sbad∩S

(s)
t

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} .

This implies E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|.

At the same time, Lemma A.8.7 gives us a ρ such that with probability 1−O(log3 d), we

have

1

n

∑
i∈S(s)

t+1

τi ≤
1

n

∑
τi≤ρ,i∈S(s)

t

τi ≤
3

4
· 1
n

∑
i∈S(s)

t

τi .

Hence, we have〈
M(S

(s)
t+1), U

(s)
t

〉
=

〈
1

n

∑
i∈S(s)

t+1

(xi − µ(S(s)
t+1))(xi − µ(S

(s)
t+1))

⊤, U
(s)
t

〉

≤

〈
1

n

∑
i∈S(s)

t+1

(xi − µ(S(s)
t ))(xi − µ(S(s)

t ))⊤, U
(s)
t

〉

≤ 1

n

∑
i∈S(s)

t+1

τi + ∥µ(s)
t − µ(S

(s)
t )∥22

≤ 3

4n

∑
i∈S(s)

t

τi + 0.01

(a)

≤ 0.76
〈
M(S

(s)
t ), U

(s)
t

〉
,
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where (a) follows from our assumption that ψ(s)
t > 1

5.5
λ
(s)
t > 2

16.5
C.

A.8.2.5 Proof of Lemma A.8.6

Proof. If Lemma A.8.5 holds, we have〈
M(S

(s)
t ), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t−1), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
1 ), U

(s)
t

〉
≤ 0.76∥M(S

(s)
1 )∥2

We pick n large enough such that with probability 1−O(log3 d),

∥Σ(s)
t ∥2 ≈0.05 ∥M(S

(s)
t )∥2 .

Thus, we have 〈
Σ

(s)
t , U

(s)
t

〉
≤ 0.81∥M(S

(s)
1 )∥2 .

By Lemma A.6.1, we haveM(S
(s)
t ) ⪯M(S

(s)
1 ). by our choice of α(s), we have α(s)M(S

(s)
t+1) ⪯

1
100

I and α(s)Σ
(s)
t ⪯ 1

100
I. Therefore, by Lemma A.6.13 we have∥∥∥∥∥

T2∑
i=1

Σ
(s)
t

∥∥∥∥∥
2

≤
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+ α(s)

T2∑
t=0

〈
U

(s)
t ,
∣∣∣Σ(s)

t

∣∣∣〉 ∥Σ(s)
t ∥2 +

log(d)

α(s)

(a)

≤
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,
∣∣∣Σ(s)

t

∣∣∣〉+ 200 log(d)∥M(S
(s)
1 )∥2

where (a) follows from our choice of α(s), C, and n.

Meanwhile, we have

|Σ(s)
t | ⪯M(S

(s)
t ) + 0.15 I .
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Thus we have 〈
U

(s)
t ,
∣∣∣Σ(s)

t

∣∣∣〉 ≤ 0.91
∥∥∥M(S

(s)
1 )
∥∥∥
2

Then we have∥∥∥M(S
(s)
T2
)
∥∥∥
2
≤ 1

T2

∥∥∥∥∥
T2∑
i=1

M(S
(s)
t )

∥∥∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

Σ
(s)
t

∥∥∥∥∥
2

+ 0.05 ∥M(S
(s)
1 )∥2

≤ 1

T2

(
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,
∣∣∣Σ(s)

t

∣∣∣〉+ 200 log(d)∥M(S
(s)
1 )∥2

)
+ 0.05 ∥M(S

(s)
1 )∥2

≤ 0.91∥M(S
(s)
1 )∥2 +

200 log(d)

T2
∥M(S

(s)
1 )∥2 + 0.05 ∥M(S

(s)
1 )∥2

≤ 0.98 ∥M(S
(s)
1 )∥2

A.8.2.6 Proof of Private 1-D filter for distributions with bounded covariance

Lemma A.8.7 (Private 1-D filter: picking threshold privately for distributions with bounded

covariance). Algorithm DP-1Dfilter-ht(µ, U, α, ε, δ, S) running on a dataset {τi = (xi −

µ)⊤U(xi − µ)}i∈S is (ε, δ)-DP. Define ψ ≜ 1
n

∑
i∈S τi. If τi’s satisfy

1

n

∑
i∈Sgood∩S

τi ≤ ψ/1000 ,

and n ≥ Ω̃
(

B2d
ε

)
then DP-1Dfilter-ht outputs a threshold ρ such that

2(
∑

i∈Sgood∩S

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ}) ≤

∑
i∈Sbad∩S

1{τi ≤ ρ}τi
ρ
+ 1{τi > ρ} , (A.17)

and with probability 1−O(1/ log3 d),

1

n

∑
τi<ρ

τi ≤ 0.75ψ .
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Proof. 1. ρ cuts enough

Let ρ be the threshold picked by the algorithm. Let τ̂i denote the minimum value of

the interval of the bin that τi belongs to. It holds that

1

n

∑
τi≥ρ,i∈[n]

(τi − ρ) ≥
1

n

∑
τ̃i≥ρ,i∈[n]

(τ̂i − ρ)

=
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)hj

(a)

≥
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)h̃j −O

(
log(B2d) ·B2d ·

√
log(log(B2d) log d) log(1/δ)

εn

)
(b)

≥ 0.31ψ̃ − Õ(B
2d

εn
)

(c)

≥ 0.3ψ − Õ(B
2d

εn
) ,

where (a) holds due to the accuracy of the private histogram (Lemma A.6.12), (b) holds

by the definition of ρ in our algorithm, and (c) holds due to the accuracy of ψ̃. This

implies

1

n

∑
τi<ρ

τi ≤ ψ − 1

n

∑
τi≥ρ

(τi − ρ) ≤ 0.7ψ + Õ(B2d/εn).

2. ρ doesn’t cut too much

Define C2 to be the threshold such that 1
n

∑
τi>C2

(τi−C2) = (2/3)ψ. Suppose 2b ≤ C2 ≤

2b+1, we have
∑

τ̂i≥2b−1(τ̂i − 2b−1) ≥ (1/3)ψ because ∀τi ≥ C2, (τ̂i − 2b−1) ≥ 1
2
(τi − C2).

Then the threshold picked by the algorithm ρ ≥ 2b−1, which implies ρ ≥ 1
4
C2. Suppose

ρ < C2, since ρ ≥ 1
4
C2∑

i∈Sbad∩S,τi<ρ

τi +
∑

i∈Sbad∩S,τi≥ρ

ρ ≥ 1

4
(

∑
i∈Sbad∩S,τi<C2

τi +
∑

i∈Sbad∩S,τi≥C2

C2)

(a)

≥ 10

4
(

∑
i∈Sgood∩S,τi<C2

τi +
∑

i∈Sgood∩S,τi≥C2

C2)

(b)

≥ 10

4
(

∑
i∈Sgood∩S,τi<ρ

τi +
∑

i∈Sgood∩S,τi≥ρ

ρ),



246

where (a) holds by Lemma A.8.8, and (b) holds since ρ ≤ C2. If ρ ≥ C2, the statement

of the Lemma A.8.8 directly implies Equation (A.17).

Lemma A.8.8. Assuming that the condition in Eq.(A.16) holds, then for any C such that

1

n

∑
i∈S,τi<C

τi +
1

n

∑
i∈S,τi≥C

C ≥ (1/3)ψ ,

we have ∑
i∈Sbad∩S,τi<C

τi +
∑

i∈Sbad∩S,τi≥C

C ≥ 10(
∑

i∈Sgood∩S,τi<C

τi +
∑

i∈Sgood∩S,τi≥C

C)

Proof. First we show an upper bound on Sgood:

1

n

∑
i∈Sgood∩S,τi<C

τi +
1

n

∑
i∈Sgood∩S,τi≥C

C ≤ 1

n

∑
i∈Sgood∩S

τi ≤ ψ/1000.

Then we show an lower bound on Sbad:

1

n

∑
i∈Sbad∩S,τi<C

τi +
1

n

∑
i∈Sbad∩S,τi>C

C

=
1

n

∑
i∈S,τi<C

τi +
1

n

∑
i∈S,τi≥C

C

−( 1
n

∑
i∈Sgood∩S,τi<C

τi +
1

n

∑
i∈Sgood∩S,τi≥C

C)

≥ (1/3− 1/1000)ψ .

Combing the lower bound and the upper bound yields the desired statement

A.8.2.7 Regularity lemmas for distributions with bounded covariance

Definition A.8.9 ([73, Definition 3.1] ). Let D be a distribution with mean µ ∈ Rd and

covariance Σ ⪯ I. For 0 < α < 1/2, we say a set of points S = {X1, X2, · · · , Xn} is α-good

with respect to µ ∈ Rd if following inequalities are satisfied:
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• ∥µ(S)− µ∥2 ≤
√
α

•
∥∥∥ 1
|S|
∑

i∈S (Xi − µ(S)) (Xi − µ(S))⊤
∥∥∥
2
≤ 1.

Lemma A.8.10 ([73, Lemma 3.1] ). Let D be a distribution with mean µ ∈ Rd and covariance

Σ ⪯ I. Let S = {X1, X2, · · · , Xn} be a set of i.i.d. samples of D. If n = Ω(d log(d)/α), then

with probability 1−O(1), there exists a set Sgood ⊆ S such that Sgood is α-good with respect

to µ and |Sgood| ≥ (1− α)n.

Lemma A.8.11 ([73, Lemma 3.2] ). Let S be an α-corrupted bounded covariance dataset

under Assumption 2. If Sgood is α-good with respect to µ, then for any T ⊂ S such that

|T ∩ Sgood| ≥ (1− α)|S|, we have

∥µ(T )− µ∥2 ≤
1

1− 2α
·
(
2
√
α ∥M(T )∥2 + 3

√
α

)
.

A.9 Experiments

We evaluate our PRIME and compare with DP mean estimators [129] on synthetic dataset

in Figure 2.1, which consists of 106 samples from (1− α)N (0, I) + αN (µbad, I). The main

focus of this evaluation is to compare the estimation error and demonstrate the robustness of

PRIME under differential privacy guarantees. Our choice of experiment settings and hyper

parameters are following: d ≈ 100, µbad = (1.5, 1.5, · · · , 1.5)d, (ε, δ) = (10, 0.01), α = 0.1 ,

R = 10, C = 2.

Our implementation is based on Python with basic Numpy library. We run on a 2018

Macbook Pro machine. For each choice of d in our settings, PRIME takes less than 2 minutes

and stops after roughly 3 epochs. The source code for reproducing Figure 2.1 is available at

https://github.com/xiyangl3/robust_dp.

https://github.com/xiyangl3/robust_dp
https://github.com/xiyangl3/robust_dp
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Appendix B

APPENDICES FOR CHAPTER 3

B.1 General case: utility analysis of HPTR

We prove the following theorem that provides a utility guarantee for HPTR output θ̂ measured

in Dϕ(θ̂, θ).

Theorem 28. For a given dataset S, a target error function Dϕ : Rp ×Rp → R+, probability

ζ ∈ (0, 1), and privacy (ε, δ), HPTR achieves Dϕ(θ̂, θ) = c0ρ for some ρ > 0 and any constant

c0 > 3c1 with probability 1− ζ if there exist constants c1, c2 > 0 and (∆ ∈ R+, ρ ∈ R+) such

that with the choice of k∗ = (2/ε) log(4/(δζ)), τ = (c0 + c1)ρ, the following assumptions are

satisfied:

(a) (Bounded volume) (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2p , and

Vol({θ̂ : Dϕ(θ̂, θ) ≤ (c0 + 2c1)ρ})
Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

≤ ec2p ,

(b) (Local sensitivity) For all S ′ within Hamming distance k∗ from S, maxS′′∼S′ ∥DS′′(µ̂)−

DS′(µ̂)∥ ≤ ∆ for all µ̂ ∈ Bτ+(k∗+3)∆,S,

(c) (Bounded sensitivity) ∆ ≤ (c0−3c1)ρε
32(c2p+(ε/2)+log(16/δζ))

, and

(d) (Robustness) |Dϕ(θ̂, θ)−DS(θ̂)| ≤ c1ρ for all θ̂ ∈ Bτ,S.

The parameter ρ ∈ R+ represents the target error up to a constant factor and depends

on the resilience of the underlying distribution Pθ,ϕ that the samples are drawn from. We
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explicitly prescribe how to choose the parameter ρ for each problem instance in Sections 3.3,

3.4, 3.5, and 3.6. Following the standard analysis techniques for exponential mechanisms, we

show that the output concentrates around an inner set {θ̂ : Dϕ(θ̂, θ) ≤ c0ρ}, by comparing its

probability mass with an outer set {θ̂ : Dϕ(θ̂, θ) ≥ c1ρ}. This uses the ratio of the volumes

in the assumption (a) and the closeness of the error metric and D(θ̂) in the assumption (d).

When there is a strict gap between the two, which happens if ερ/∆≫ p+ log(1/ζ) as in the

assumption (c), this implies Dϕ(θ̂, θ) ≤ c0ρ with probability 1 − ζ. We provide a proof in

Section B.1.2.

A major challenge in analyzing HPTR is in showing that the safety test threshold

k∗ = (2/ε) log(4/(δζ)) is not only large enough to ensure that datasets with safety violation

is screened with probability 1− δ/2 but also small enough such that good datasets satisfying

the assumptions (a), (b), and (c) pass the test with probability 1− ζ/2. We establish this

first in Section B.1.1.

B.1.1 Large safety margin

In this section, we show in Lemma B.1.3 that under the assumptions of Theorem 28, we get

a large enough margin for safety such that we pass the safety test with high probability. We

follow the proof strategy introduced in [34] adapted to our more general framework. A major

challenge is the lack of a uniform bound on the sensitivity, which the analysis of [34] relies on.

We generalize the analysis by showing that while the data does not satisfy uniform sensitivity

bound, we can still exploit its local sensitivity bound in the assumption (b).

The following main technical lemma is a counter part of [34, Lemma 3.7], where we

have an extra challenge that the sensitivity bound is only local; there exists θ̂ far from

θ where the sensitivity bound fails. We rely on the assumption (b) to resolve it. Let

wS(B) ≜
∫
B
exp{−(ε/4∆)DS(µ̂)}dµ̂ be the weight of a subset B ⊂ Rp. The following lemma

will be used to show that the denominator of the exponential distribution in Release step

does not change too fast between two neighboring datasets.
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Lemma B.1.1. Under the assumption (b) and δ ∈ (0, 1/2), for a dataset S ′ at Hamming

distance at most k∗ from S, if wS′(Bτ−∆,S′) ≥ (1− δ)wS′(Bτ+∆,S′) then S ′ ∈ SAFEε,4e2εδ,τ .

Proof. We follow the proof strategy of [34, Lemma 3.7] but there are key differences due

to the fact that we do not have a universal sensitivity bound, but only local bound. In

particular, we first establish that under the local sensitivity assumption, Bτ,S′′ ⊆ Bτ+∆,S′ for

all S ′′ ∼ S ′, which will be used heavily throughout the proof. Since DS′′(θ̂) ≤ DS′(θ̂) + ∆ for

all θ̂ ∈ Bτ+(k∗+3)∆,S, we have Bτ,S′′ ∩Bτ+(k∗+3)∆,S ⊆ Bτ+∆,S′ . We are left to show that Bτ,S′′ \

Bτ+(k∗+3)∆,S = ∅, which follows from the fact that (Bτ,S′′ \Bτ+(k∗+1.5)∆,S)∩Bτ+(k∗+3)∆,S) = ∅

and DS′′(θ̂) is a Lipschitz continuous function. Similarly, it follows that Bτ−∆,S′ ⊆ Bτ,S′′ . In

particular, this implies that Bτ,S′ ⊆ Bτ+(k∗+3)∆,S for any S ′ with dH(S ′, S) ≤ k∗.

We first show that for any E ⊂ Bτ,S′ one side of the (ε/2, 4eε/2δ)-DP condition is

met: Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤ eε/2Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ E) + 4eε/2δ for all S ′′ ∼ S ′ where r(ε,∆,τ,S′)

and r(ε,∆,τ,S′′) are the distributions used in the exponential mechanism as defined in (3.3)

respectively. For B = Bτ,S′ ∩Bτ,S′′ , we have

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) = Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B) + Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E \B)

=
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B) + Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E \B)

≤
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) + Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ̸∈ Bτ,S′′) .

The ratio is bounded due to the local sensitivity bound at S ′ as

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

≤ eε/4
wS′′(Bτ,S′′)

wS′(Bτ,S′)

≤ eε/2
wS′(Bτ,S′′)

wS′(Bτ,S′)

≤ eε/2
wS′(Bτ+∆,S)

wS′(Bτ,S′)
≤ eε/2(1 + 2δ) ,

where the second inequality follows from the fact that wS′′(A) ≤ eε/6wS′(A) for any set

A ⊂ Bτ,S′ ∪Bτ,S′′ ⊆ Bτ+(k∗+3)∆,S and the third inequality follows from the fact that Bτ,S′′ ⊆
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Bτ+∆,S′ . From the assumption on the weights, it follows that wS′(Bτ+∆,S′)/wS′(Bτ,S′) ≤

wS′(Bτ+∆,S′)/wS′(Bτ−∆,S′) ≤ 1/(1− δ) ≤ 1 + 2δ for δ < 1/2. Similarly,

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ̸∈ Bτ,S′′) ≤ Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ̸∈ Bτ−∆,S′)

≤ 1− wS′(Bτ−∆,S′)

wS′(Bτ,S′)
≤ 1− wS′(Bτ−∆,S′)

wS′(Bτ+∆,S′)
≤ δ .

Putting these together, we get Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤ eε/2Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ E) + 4eε/2δ.

Next, we show the other side of the (ε/2, 4eε/2δ)-DP condition: Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤

eε/2Pθ̂∼r(ε,∆,τ,S)
(θ̂ ∈ E) + 4e2εδ for all S ′ ∼ S. We need to show an upper bound on the ratio:

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S)
(θ̂ ∈ E ∩B)

≤ eε/4
wS(Bτ,S)

wS′(Bτ,S′)

≤ eε/2
wS(Bτ,S)

wS(Bτ,S′)

≤ eε/2
wS(Bτ,S)

wS(Bτ−∆,S)
≤ (1 + 2δ)eε/2 ,

For the probability outside Bτ,S′ ,

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ̸∈ Bτ,S′) ≤ Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ Bτ+∆,S′ \Bτ,S′)

≤ wS′′(Bτ+∆,S′ \Bτ,S′)

wS′′(Bτ,S′′)

≤ eε/2
wS′(Bτ+∆,S′ \Bτ,S′)

wS′(Bτ,S′′)

≤ eε/2
wS′(Bτ+∆,S′)− wS′(Bτ,S′)

wS′(Bτ−∆,S′)

≤ eε/2(1 + 2δ − 1) = 2eε/2δ .

where the first inequality follows from Bτ,S′′ ⊆ Bτ+∆,S′ , the second inequality follows from

(Bτ+∆,S′ \ Bτ,S′) ∩ Bτ,S′′ ⊆ Bτ+∆,S′ \ Bτ,S′ , the third inequality follows from the fact that

Bτ,S′′ ⊆ Bτ+∆,S′ and the local sensitivity assumption, and the last inequality follows from the

weight assumption and Bτ−∆,S′ ⊆ Bτ,S′ .
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The next lemma identifies the range of the threshold k∗ = O(τ/∆) that ensures safety.

Lemma B.1.2. Under the assumption (b), if there exists a g > 0 such that τ−∆(k∗+g+1) > 0

and

Vol(Bτ+∆(k∗+1),S)

Vol(Bτ−∆(k∗+g+1),S)
e

−εg
4 ≤ 1

8
e−ε/2δ , (B.1)

then S ′ ∈ SAFE(ε/2,δ/2,τ) for all S ′ within Hamming distance k∗ from S.

Proof. Consider S ′ at Hamming distance k away from S. From Lemma B.1.1 it suffices to

show that wS′(Bτ−∆,S′)/wS′(Bτ+∆,S′) ≥ 1− δ′ for δ′ = (1/8)e−ε/2δ, which is equivalent to

wS′(Bτ+∆,S′ \Bτ−∆,S′)/wS′(Bτ+∆,S′) ≤ δ′ .

The denominator is lower bounded by

wS′(Bτ+∆,S′) ≥ wS′(Bτ−∆(1+g),S′) ≥ Vol(Bτ−∆(1+g),S′)e−ε(τ−∆(1+g))/(4∆)

≥ Vol(Bτ−∆(1+g+k),S)e
−ε(τ−∆(1+g))/(4∆) ,

where the last inequality uses the local sensitivity (the assumption (b)). The numerator is

upper bounded by

wS′(Bτ+∆,S′ \Bτ−∆,S′) ≤ wS′(Bτ+(k+1)∆,S \Bτ−∆,S′) ≤ Vol(Bτ+(k+1)∆,S)e
−ε(τ−∆)/(4∆) ,

where the first inequality uses the local sensitivity. Together, it follows that

wS′(Bτ+∆,S′ \Bτ−∆,S′)

wS′(Bτ+∆,S′)
≤

Vol(Bτ+(k+1)∆,S)e
−ε(τ−∆)/(4∆)

Vol(Bτ−∆(1+g+k),S)e−ε(τ−∆(1+g))/(4∆)
≤ δ′ =

1

8
eε/2δ ,

as e−ε(τ−∆)/(4∆)/e−ε(τ−∆(1+g))/(4∆) = e−εg/4, which implies safety.

We next show that k∗ = O((1/ε) log(1/(δζ))) is sufficient to ensure a large enough safety

margin of mτ − k∗ = Ω((1/ε) log(1/ζ)).

Lemma B.1.3. Under the assumptions (a), (b), and (c) of Theorem 28, for k∗ = (2/ε) log(4/(δζ)),

if dH(S ′, S) ≤ (2/ε) log(4/(ζδ)) then S ′ ∈ SAFE(ε/2,δ/2,τ).
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Proof. Applying Lemma B.1.2 with k∗ = (2/ε) log(4/(δζ)) and g = (1/(8∆))τ , we require

Vol(Bτ+∆(k∗+1),S)

Vol(B(7/8)τ−∆(k∗+1),S)
e

−ετ
32∆ ≤ 1

8
e−ε/2δ .

From the assumption (a), it is sufficient to have

exp
{
c2p−

τε

32∆

}
≤ 1

8
e−ε/2δ .

For ∆ ≤ (τε)/(32(c2p + (ε/2) + log(8/δ))), which follows from the assumption (c), this is

satisfied.

B.1.2 Proof of Theorem 28

We first show that we pass the safety test with high probability. Define the error event E as the

event that we output ⊥ in the Test step. From Lemma B.1.3, we have mτ > (2/ε) log(4/(δζ))

under the assumptions (a), (b), and (c). This implies that

P(E) = P
(
mτ + Lap(2/ε) < (2/ε) log(2/δ)

)
≤ ζ

2
.

We next show that resilience implies good utility (once safety test has passed). We

want the exponential mechanism to output an accurate θ̂ near θ with high probability, i.e.,

Pθ̂∼r(ε,∆,τ,S)
(Dϕ(θ̂, θ) ≥ c0ρ) ≤ ζ/2. We omit the subscript in the probability for brevity, and

it is assumed that randomness is in the sampling of the exponential mechanism. We want to

bound by ζ/2 the failure probability:

P
(
Dϕ(θ̂, θ) ≥ c0ρ

)
≤

P
(
Dϕ(θ̂, θ) ≥ c0ρ

)
P
(
Dϕ(θ̂, θ) ≤ c1ρ1

)
≤ Vol(Bτ,S)

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

maxθ̂:Dϕ(θ̂,θ)≥c0ρ
P(θ̂)

minθ̂:Dϕ(θ̂,θ)≤c1ρ1
P(θ̂)

,

as long as {θ̂ : Dϕ(θ̂, θ) ≤ c0ρ} ⊆ Bτ,S (otherwise we are under-estimating the volume), which

follows from the assumption (d); DS(θ̂) ≤ (Dϕ(θ̂, θ) + c1ρ) ≤ (c0 + c1)ρ = τ .
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Similarly, since θ̂ ∈ Bτ,S implies Dϕ(θ̂, θ) ≤ τ + c1ρ = (c0 + 2c1)ρ, the volume ratio is

bounded by

Vol(Bτ,S)

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ)
≤ Vol({θ̂ : Dϕ(θ̂, θ) ≤ (c0 + 2c1)ρ})

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})
≤ ec2p ,

under the assumption (a). The probability ratio can be bounded similarly. From the

assumption (d), we have

maxθ̂:Dϕ(θ̂,θ)≥c0ρ
P(θ̂)

minθ̂:Dϕ(θ̂,θ)≤c1ρ
P(θ̂)

≤ exp
{
− ε

4∆

(
(c0 − c1)− (2c1)

)
ρ
}
≤ exp

{
− ε(c0 − 3c1)ρ

4∆

}
.

When ec2p−(ε(c0−3c1)ρ/(4∆))) ≤ ζ/2, we have the desired bound. This is guaranteed with our

assumption (c).

B.2 Auxiliary lemmas

Lemma B.2.1. For any symmetric Σ ≻ 0 and vector u ∈ Rd,

max
v:∥v∥=1

⟨v, u⟩
v⊤Σv

=
∥∥Σ−1/2u

∥∥ . (B.2)

Proof. This follows analogously from the proof of Lemma 3.3.1.

Lemma B.2.2. Let Σ, A ∈ Rd×d be a symmetric matrix. If −cId×d ⪯ Σ−1/2AΣ−1/2 − Id×d ⪯

cId×d for some c > 0, then we have for any u ∈ Rd,

∥Σ−1/2(A− Σ)u∥ ≤ c∥Σ1/2u∥ . (B.3)

Proof. Using the fact that −Id×d ⪯M ⪯ Id×d implies −Id×d ⪯M2 ⪯ Id×d, for any symmetric

matrix M , we know

−c2Id×d ⪯ Σ−1/2(A− Σ)Σ−1(A− Σ)Σ−1/2 ⪯ c2Id×d , (B.4)

which implies that

−c2Σ ⪯ (A− Σ)Σ−1(A− Σ) ⪯ c2Σ . (B.5)



255

Thus, we know

∥Σ−1/2(A− Σ)u∥2 = u⊤(A− Σ)Σ−1(A− Σ)u ≤ c2u⊤Σu = c2∥Σ1/2u∥2 . (B.6)

B.3 Existing lower bounds

Theorem B.3.1 (Lower bound for DP Gaussian mean estimation with known covariance

[129, Lemma 6.7]). Let µ̂ : Rn×d → [−Rσ,Rσ]d be an (ε, δ)-differentially private estimator

(with δ ≤
√
d/(48

√
2Rn

√
log(48

√
2Rn/

√
d))) such that for every Gaussian distribution

P = N (µ, σ2Id×d) (for −Rσ ≤ µj ≤ Rσ where j ∈ [d]) and

ES∼Pn

[
∥µ̂(S)− µ∥2

]
≤ α2 ≤ dσ2R2

6
, (B.7)

then n ≥ dσ
24αε

.

Theorem B.3.2 (Lower bound for DP covariance bounded mean estimation [135, The-

orem 6.1]). Suppose µ̂ is an (ε, 0)-DP estimator such that, for every product distribution

P ∈ Rd such that E[P ] = µ, supv:∥v∥=1 Ex∼P [⟨v, x− µ⟩2] ≤ 1 and

ES∼Pn

[
∥µ̂(S)− µ∥2

]
≤ α2 . (B.8)

Then n = Ω(d/(εα2))

Theorem B.3.3 (Lower bound on the error rate for hypercontractive linear regression with

independent noise[22, Theorem 6.1]). Consider linear model y = ⟨β, x⟩+ η, where optimal

hyperplane β is used to generate data, and the noise η is independent of the samples x. Then

there exists two distribution D1 and D2 over R2 × R such that the marginal distribution over

R2 has covariance Σ and is (κk, k)-hypercontractive yet ∥Σ1/2(β1 − β2)∥ = Ω(
√
κkγα

1−1/k),

where β1 and β2 are the optimal hyperplanes for D1 and D2 respectively, γ < 1/α1/k and the

noise η is uniform over [−γ, γ].
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Theorem B.3.4 (Lower bound on the error rate for hypercontractive linear regression with

dependent noise[22, Theorem 6.2]). There exists two distributions D1, D2 over R2 × R such

that the marginal distribution over R2 has covariance Σ and is κk, k-hypercontractive yet

∥Σ1/2(β1− β2)∥ = Ω(
√
κkγα

1−2/k), where β1 and β2 are least square solutions for D1 and D2,

respectively, γ < 1/α1/k and the noise is a function of the marginal distribution of R2,

Theorem B.3.5 (Lower bound for DP sub-Gaussian linear regression [40, Theorem 4.1]).

Given i.i.d. samples S = {(xi, yi)}ni=1 drawn from model yi = ⟨β, xi⟩+ηi, where ηi ∼ N (0, γ2),

β ∈ Θ = {β ∈ Rd : ∥β∥ ≤ 1}, P(∥x∥ ≤ 1) = 1, Σ = E[xx⊤] is diagonal and satisfies

0 < 1/L < dλmin(Σ) ≤ dλmax(Σ) < L for some constant L = O(1). Denote this class

of distribution as Pγ,Θ,Σ. Denote Mε,δ as a class of (ε, δ)-DP algorithms. Then suppose

ε ∈ (0, 1), δ ∈ (0, n−(1+w)) for some fixed w > 0, then there exists a constant such that

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pγ,Θ,Σ

EPn

[
∥Σ1/2(β̂(S)− β)∥2

]
≥ cγ2

(
d

n
+

d2

n2ε2

)
. (B.9)

Theorem B.3.6 (Lower bound of linear regression [179, Theorem 1]). A multiset of i.i.d.

samples S = {(xi, yi)}ni=1 is drawn from distribution P ∈ Rd × R in a class PB,Y , where

|y| ≤ Y , ∥x∥ ≤ 1 and β ∈ ΘB = {β ∈ Rd : ∥β∥ ≤ B}. Then there exists a constant c such

that

inf
β̂∈ΘB

sup
P∈PB,Y

EPn

[(
y −

〈
β̂(S), x

〉)2
− min

β∈ΘB

(y − ⟨β, x⟩)2
]
≥ cmin

{
Y 2, B2,

dY 2

n
,
BY√
n

}
.(B.10)

Theorem B.3.7 (Lower bound of Gaussian DP covariance estimation [129, Lemma 6.11]).

Let Σ̂ : Rn×d → Θ be an (ε, 0)-DP estimator (where Θ is the space of all d×d PSD matriaces),

and for every N (0,Σ) over Rd such that 1/2Id×d ⪯ Σ ⪯ 3/2Id×d,

ES∼N (0,Σ)n

[
∥Σ̂(S)− Σ∥2F

]
≤ α2

64
, (B.11)

then n ≥ Ω(d2/(εα)).
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Appendix C

APPENDICES FOR CHAPTER 4

C.1 Related work

Our work builds upon a series of advances in private SGD [131, 27, 26, 85, 149, 204, 112] to

make advance in understanding the tradeoff of privacy and sample complexity for PCA. Such

tradeoffs have been studied extensively in canonical statistical estimation problems of mean

(and covariance) estimation and linear regression.

Private mean estimation. As one of the most fundamental problem in private data

analysis, mean estimation is initially studied under the bounded support assumptions, and

the optimal error rate is now well understood. More recently, [25] considered the private mean

estimation problem for k-th moment bounded distributions where the support of the data is

unbounded and provided minimax error bound in various settings. [140] studied private mean

estimation from Gaussian sample, and obtained an optimal error rate. There has been a lot

of recent interests on private mean estimation under various assumptions, including mean and

covariance joint estimation [130, 32], heavy-tailed mean estimation [135], mean estimation

for general distributions [87, 197], distribution adaptive mean estimation [39], estimation for

unbounded distribution parameters [133], mean estimation under pure differential privacy [107],

local differential privacy [75, 76, 89, 123], user-level differential privacy [83], Mahalanobis

distance[34] and robust and differentially private mean estimation [160, 146, 161].

Private linear regression The goal of private linear regression is to learn a linear

predictor of response variable y from a set of examples {xi, yi}ni=1 while guarantee the privacy

of the examples. Again, the work on private linear regression can be divided into two

categories: deterministic and randomized. In the deterministic setting where the data is

deterministically given without any probabilistic assumptions, significant advances in DP
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linear regression has been made [201, 142, 168, 71, 27, 208, 88, 167, 206, 180]. In the

randomized settings where each example {xi, yi} is drawn i.i.d. from a distribution [166], [77]

proposes an exponential time algorithm that achieves asymptotic consistency. [40] provides

an efficient and minimax optimal algorithm under sub-Gaussian design and nearly identity

covariance assumptions. Very recently, [161] for the first time gives an exponential time

algorithm that achieves minimax risk for general covariance matrix under sub-Gaussian and

hypercontractive assumptions. [199] gives the first computationally efficient algorithm to

achieve nearly optimal risk using DP-SGD with adaptive clipping.

Private PCA without spectral gap. There is a long line of work in Private PCA

[102, 103, 101, 33, 46, 136, 80, 24]. We explain the closely related ones in Section 4.2.3, with

analysis when the covariance matrix has a spectral gap.

When there is no spectral gap, one can still learn a principal component. However,

since the principal component is not unique, the error is typically measured in how much

of the variance is captured in the estimated direction: 1 − v̂⊤Σv̂/∥Σ∥. [46] introduces

an exponential mechanism (from [164]) which samples an estimate from a distribution

fΣ̂(v̂) = (1/C) exp{((εn)/c2)v̂⊤Σ̂v̂}, where C is a normalization constant to ensure that the

pdf integrates to one. This achieves a stronger pure DP, i.e., (ε, 0)-DP, but is computationally

expensive; [46] does not provide a tractable implementation and [136] provides a polynomial

time implementation with time complexity at least cubic in d. This achieves error rate

1 − v̂⊤Σv̂/∥Σ∥ = Õ(d2/(εn)) in [46, Theorem 7], which, when there is a spectral gap,

translates into

sin(v̂, v1)
2 = Õ

(κd2
εn

)
, (C.1)

with high probability. Closest to our setting is the analyses in [161, Corollary 6.5] that proposed

an exponential mechanism that achieves 1− v̂⊤Σv̂/∥Σ∥ = Õ(
√
d/n+(d+log(1/δ))/(εn)) with

high probability under (ε, δ)-DP and Gaussian samples, but this algorithm is computationally

intractable. This is shown to be tight when there is no spectral gap. When there is a spectral
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gap, this translates into

sin(v̂, v1)
2 = Õ

(
κ
(√d

n
+
d+ log(1/δ)

εn

))
. (C.2)

Distributed PCA. In distributed PCA, the dataset is stored across different local servers

[117, 118, 205, 92]. [117, 118, 205] consider differentially private distributed PCA under the

assumption that the examples are deterministic and have norms bounded by a fixed and

known constant. The algorithms appeared in [117, 118, 205] are based on the Gaussian

mechanism [80] on local server and an aggregator in the central server. The resulting utility

guarantees are the same as those from [80], which are discussed in Section 4.2.3.

C.2 Preliminaries

Since we focus on one-pass algorithms where a data point is only accessed once, we need a

basic parallel composition of DP.

Lemma C.2.1 (Parallel composition [165]). Consider a sequence of interactive queries

{qk}Kk=1 each operating on a subset Sk of the database and each satisfying (ε, δ)-DP. If Sk’s

are disjoint then the composition (q1(S1), q2(S2), . . . , qK(SK)) is (ε, δ)-DP.

We also utilize the following serial composition theorem.

Lemma C.2.2 (Serial composition [79]). If a database is accessed with an (ε1, δ1)-DP

mechanism and then with an (ε2, δ2)-DP mechanism, then the end-to-end privacy guarantee

is (ε1 + ε2, δ1 + δ2)-DP.

When we apply private histogram learner to each coordinate, we require more advanced

composition theorem from [128].

Lemma C.2.3 (Advanced composition [128]). For ε ≤ 0.9, an end-to-end guarantee

of (ε, δ)-differential privacy is satisfied if a database is accessed k times, each with a

(ε/(2
√

2k log(2/δ)), δ/(2k))-differential private mechanism.
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C.3 Converse results

When privacy is not required, we know from Theorem 4.2.2 that under Assumptions A.1-A.3,

we can achieve an error rate of Õ(κ
√
V/n). In the regime of V = O(d) and κ = O(1),

n = O(d) samples are enough to achieve an arbitrarily small error. The next lower bounds

shows that we need n = O(d2) samples when (ε = O(1), 0)-DP is required, showing that

private PCA is significantly more challenging than a non-private PCA, when assuming only the

support and moment bounds of assumptions A.1-A.3. We provide a proof in Appendix C.3.3.

Theorem C.3.1 (Lower bound without Assumption A.4). Let Mε be a class of (ε, 0)-DP

estimators that map n i.i.d. samples to an estimate v̂ ∈ Rd. A set of distributions satisfying

Assumptions A.1–A.3 with M = O(d log n) and V = O(d) is denoted by P̃(λ1,λ2). There exists

a universal constant C > 0 such that

inf
v̂∈Mε

sup
P∈P̃(λ1,λ2)

ES∼Pn [sin(v̂(S), v1)] ≥ Cmin

(
κd2

εn

√
λ2
λ1
,

√
λ2
λ1

)
. (C.3)

We next provide the proofs of all the lower bounds.

C.3.1 Proof of Theorem 4.5.3 on the lower bound for Gaussian case

Our proof is based on following differentially private Fano’s method [3, Corollary 4].

Theorem C.3.2 (DP Fano’s method [3, Corollary 4]). Let P denote family of distributions

of interest and θ : P → Θ denote the population parameter. Our goal is to estimate θ from

i.i.d. samples x1, x2, . . . , xn ∼ P ∈ P. Let θ̂ε be an (ε, 0)-DP estimator. Let ρ : Θ×Θ→ R+

be a pseudo-metric on parameter space Θ. Let V be an index set with finite cardinality. Define

PV = {Pv, v ∈ V} ⊂ P be an indexed family of probability measures on measurable set (X ,A).

If for any v ̸= v′ ∈ V,

1. ρ(θ(Pv), θ(Pv′)) ≥ τ ,

2. DKL (Pv, Pv′) ≤ β,
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3. DTV (Pv, Pv′) ≤ ϕ,

then

inf
θ̂ε

max
P∈P

ES∼Pn

[
ρ(θ̂ε(S), θ(P ))

]
≥ max

(
τ

2

(
1− nβ + log(2)

log(|V|)

)
, 0.4τ min

(
1,
|V|
e10nϕε

))
.

(C.4)

For our problem, we are interested in Gaussian PΣ and metric ρ(u, v) = sin(u, v). Using

Theorem C.3.2, it suffices to construct such indexed set V and the indexed distribution family

PV . We use the same construction as in [202, Theorem 2.1] introduced to prove a lower bound

for the (non-private) sparse PCA problem. The construction is given by the following lemma.

Lemma C.3.3 ([202, Lemma 3.1.2]). Let d > 10. For α ∈ (0, 1], there exists Vα ⊂ Sd−1
2 and

an absolute constant c1 > 0.0233 such that for every v ̸= v′ ∈ Vα, α/
√
2 ≤ ∥v − v′∥2 ≤

√
2α

and log(|Vα|) ≥ c1d.

Fix α ∈ (0, 1]. For each v ∈ Vα, we define Σv = (λ1 − λ2)vv⊤ + λ2Id and Pv = N (0,Σv).

It is easy to see that Σv has eigenvalues λ1 > λ2 = · · · = λn. The top eigenvector of Σv is v.

Using Lemma C.6.4, we know for any v ̸= v′ ∈ V ,

α

2
≤ 1√

2
∥v − v′∥ ≤ ρ(v, v′) =

√
1− ⟨v, v′⟩2 ≤ ∥v − v′∥ ≤

√
2α . (C.5)

Using [202, Lemma 3.1.3], we know

DKL (Pv, Pv′) =
(λ1 − λ2)2

λ1λ2
(1− ⟨v, v′⟩2) ≤ (λ1 − λ2)2α2

λ1λ2
. (C.6)

Using Pinsker’s inequality, we have

DTV (Pv, Pv′) ≤
√
DKL (Pv, Pv′)

2
≤ α

√
(λ1 − λ2)2
2λ1λ2

. (C.7)

Now we set

α := min

(
1,max

(√
dc1λ1λ2

2n(λ1 − λ2)2
,
c1d

10nε

√
2λ1λ2

(λ1 − λ2)2

))
(C.8)
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Combining all cases, it follows from Theorem C.3.2 and d > 10 that there exists a constant

C such that

inf
v̂

sup
P∈PΣ

ES∼Pn [sin(v̂(S), v1(Σ))] ≥ Cmin

((√
d

n
+

d

εn

)√
λ1λ2

(λ1 − λ2)2
, 1

)
. (C.9)

C.3.1.1 Proof of Lemma C.3.3

We first point out that Lemma C.3.3 is a special case of [202, Lemma 3.1.2]. Here is the

original statement from [202].

Lemma C.3.4 ([202, Lemma 3.1.2]). Define Bp
q (Rq) =

{
θ ∈ Rp :

∑p
j=1 |θj|

q ≤ Rq

}
. Let

R̄q = Rq − 1 ≥ 1 and p ≥ 5. There exists a finite subset Θϵ ⊂ Sp−1
2 ∩Bp

q (Rq) and an absolute

constant c > 0 such that every distinct pair θ1, θ2 ∈ Θϵ satisfies

ϵ/
√
2 < ∥θ1 − θ2∥2 ≤

√
2ϵ

and

log |Θϵ| ≥ c

(
R̄q

ϵq

) 2
2−q

[
log(p− 1)− log

(
R̄q

ϵq

) 2
2−q

]
for all q ∈ [0, 1] and ϵ ∈ (0, 1].

Assume d ≥ 10 and set q = 0 and Rq =
d
8
+ 1. Lemma C.3.4 implies that there exists a

finite subset Vα ⊂ Sd−1
2 ∩ Bd

q

(
d
8
+ 1
)

and an absolute constant c such that for v ̸= v′ ∈ Vα
satisfies

α√
2
≤ ∥v − v′∥ ≤

√
2α (C.10)

and

log(|Vα|) ≥ c
d

8

(
log(d− 1)− log(

d

8
)

)
=
cd

8
log

(
8

(
1− 1

d

))
≥ cd

8
log(6.3) . (C.11)

For completeness, we also provide a direct proof of Lemma C.3.3, following the proof

strategy of Lemma C.3.4. The following lemma is a variant of classic Varshamov-Gilbert

bounds that appeared in [163, Lemma 4.10]. A similar lemma can be also found in [3,

Lemma 6].
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Lemma C.3.5 ([163, Lemma 4.10]). Let l be a positive integer that is at most k/4. Then

there exists a subset Θ ⊂ {0, 1}k and absolute constant c′ > 0.233 such that

1. For any w ∈ Θ, ∥w∥0 = l,

2. For any w ̸= w′ ∈ Θ, ∥w − w′∥0 ≥ l/2,

3. log(|Θ|) ≥ c′l log(k/l).

For d ≥ 10, let k = d− 1 and l be an integer between 1 and (d− 1)/4. We will choose l

later. Let Θ be such a set that satisfies the conditions in Lemma C.3.5. Now for α ∈ (0, 1],

we construct Vα. Define f : {0, 1}d−1 → Rd as follows.

f(w) =

(√
1− α2,

wα√
l

)
∈ Rd. (C.12)

Let

Vα := {f(w) : w ∈ Θ} . (C.13)

It is easy to see that

∥f(w)∥ =
√
1− α2 + ∥w∥2α2/l = 1 . (C.14)

For any v ̸= v′ ∈ Vα, if v = f(w) and v′ = f(w′), we know

α√
2
≤ ∥v − v′∥ =

√
∥w − w′∥2α2

l
≤
√
2α (C.15)

where the last inequality follows from the fact that ∥w − w′∥0 ≤ 2l.

Note that above inequalities hold for any l between 1 and (d− 1)/4. Let l = (d− 1)/8.

Then we have

log(|Vα|) = log(|Θ|) ≥ c′((d− 1)/8) log

(
d− 1

(d− 1)/8

)
≥ c′d

10
(C.16)

for any d ≥ 2.
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C.3.2 Proof of Theorem 4.5.4

We first construct an indexed set V and indexed distribution family PV such that xix⊤i satisfies

A.1, A.2 and A.3 in Assumption 5. Our construction is defined as follows.

By [3, Lemma 6] , there exists a finite set V ⊂ Sd−1
2 , with cardinality |V| ≥ 2d, such that

for any v ̸= v′ ∈ V , ∥v − v′∥ ≥ 1/2.

Let f(0,Id) denotes the density function of N (0, Id). Let Qv be a uniform distribution on

two point masses {±α− 1
4v}. Let Q0 be Gaussian distribution N (0, Id). For α ∈ (0, 1], we

construct Pv := (1− α)Q0 + αQv. It is easy to see that Pv is a distribution over Rd with the

following density function.

Pv(x) =


α
2
, if x = −α− 1

4v ,

α
2
, if x = α− 1

4v ,

(1− α)f(0,Id)(x) otherwise

. (C.17)

The mean of Pv is 0. The covariance of Pv is Σv = (1− α)Id +
√
αvv⊤. The top eigenvalue is

λ1 = 1 − α +
√
α, the top eigenvector is v, and the second eigenvalue is λ2 = 1 − α. And

κ = O(α−1/2).

If x = α−1/4v, then ∥xx⊤−Σv∥2 = O(α−1/2). If x ∼ N (0, Id), we know ∥xx⊤−Σv∥2 = O(d).

This implies Pv satisfies A.2 in Assumption 5 with M = O((d + α−1/2) log(n)) for n i.i.d.

samples.

It is easy to see that ∥E[(xx⊤ − Σv)(xx
⊤ − Σv)

⊤]∥2 = O(d). This means Pv satisfies A.3

in Assumption 5 with V = O(d).

By the fact that E[⟨x, u⟩2] = O(1) and E[⟨x, u⟩4] = O(1) for any unit vector u, we have

γ2 = ∥E[(xx⊤ − Σv)uu
⊤(xx⊤ − Σv)

⊤]∥2 = O(1) for any unit vector u.

Our proof technique is based on following lemma.

Lemma C.3.6 ([25, Theorem 3]). Fix α ∈ (0, 1]. Define Pv = (1− α)Q0 + αQv for v ∈ V

such that such that ρ(θ(Pv), θ(Pv′)) ≥ 2t. Let θ̂ be a (ε, δ) differentially private estimator.
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Then,

1

|V|
∑
ν∈V

Pv

(
ρ
(
θ̂, θ(Pv)

)
≥ t
)
≥

(|V| − 1) ·
(

1
2
e−ε⌈nα⌉ − δ 1−e−ε[nα⌉

1−e−ε

)
1 + (|V| − 1) · e−ε⌈nα⌉ . (C.18)

Set ρ(θ(Pv), θ(Pv′)) = sin(v, v′)/κ. By Lemma C.6.4, ρ(θ(Pv), θ(Pv′)) ≥ ∥v − v′∥/κ =

Ω(
√
α).

Lemma C.3.6 implies

sup
P∈P̃

ES∼Pn [sin(v̂(S), v1(Σ))] ≥
1

|V|
∑
v∈V

ES∼Pn
v
[sin(v̂(S), v1(Σv))] (C.19)

= κt
1

|V|
∑
v∈V

Pv

(
sin(v̂(S), v1(Σv))

κ
≥ t

)
(C.20)

≳ κt
(2d − 1) ·

(
1
2
e−ε⌈nα⌉ − δ

1−e−ε

)
1 + (2d − 1)e−ε⌈nα⌉ , (C.21)

For d ≥ 2, we know 2d − 1 ≥ ed/2. We choose

α = min

{
1

nε

(
d

2
− ε
)
,
1

nε
log

(
1− e−ε

4δeε

)
, 1

}
. (C.22)

This implies

1

2
e−ε⌈nα⌉ − δ

1− e−ε
≥ 1

4
e−ε(nα+1) > 0 . (C.23)

So we have there exists a constant C such that

inf
v̂
sup
P∈P̃

ES∼Pn [sin(v̂(S), v1(Σ))] ≥ Cκ
√
α

1
4
ed/2e−ε(nα+1)

1 + ed/2e−ε(nα+1)
(C.24)

≳ κmin

(
1,

√
d ∧ log ((1− e−ε) /δ)

nε

)
. (C.25)

C.3.3 Proof of Theorem C.3.1

Similar to the proof of Theorem 4.5.3, we use DP Fano’s method in Theorem C.3.2. It suffices

to construct an indexed set V and indexed distribution family PV such that xix⊤i satisfies

A.1, A.2 and A.3 in Assumption 5. Our construction is defined as follows.
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Let λ1 > λ2 > 0. By Lemma C.3.3, there exists a finite set Vα ⊂ Sd−1
2 , with cardinality

|Vα| = 2Ω(d), such that for any v ̸= v′ ∈ Vα, α/
√
2 ≤ ∥v − v′∥ ≤

√
2, where α :=

√
λ2/λ1.

Let f(0,S) denotes the density function of N (0, S). We construct Pv over Rd for v ∈ Vα
with the following density function.

Pv(x) =



1−λ2/λ1

2d
, if x = −

√
dλ1v ,

1−λ2/λ1

2d
, if x =

√
dλ1v ,

1− 1−λ2/λ1

d
f
(0,

λ2

1− 1−λ2/λ1
d

Id)
(x) otherwise

. (C.26)

The mean of Pv is 0. The covariance of Pv is Σv := (λ1 − λ2)vv⊤ + λ2Id. It is easy to see

that the top eigenvalue is λ1, the top eigenvector is v, and the second eigenvalue is λ2.

If x =
√
dλ1v, then ∥xx⊤ − Σv∥2 = ∥(dλ1 − λ1 + λ2) − λ2Id∥2 = O(dλ1). If x ∼

N (0, λ2

1− 1−λ2/λ1
d

Id), by the fact that λ2

1− 1−λ2/λ1
d

≤ λ1, we know ∥xx⊤ − Σv∥2 ≤ O(dλ1). This

implies Pv satisfies A.2 in Assumption 5 with M = O(d log(n)) for n i.i.d. samples.

Similarly, ∥E[(xx⊤−Σv)(xx
⊤−Σv)

⊤]∥2 ≤ ∥d(λ21−λ1λ2)vv⊤+dλ2λ1+3ΣvΣ
⊤
v ∥2 = O(dλ21).

This means Pv satisfies A.3 in Assumption 5 with V = O(d).

For v ̸= v′ ∈ Vα, we have DTV(Pv, Pv′) = (1 − λ2/λ1)/d. By Lemma C.6.4, sin(v, v′) ≥

∥v − v′∥/
√
2 ≥ (

√
λ2/λ1)/2.

By Theorem C.3.2, there exists a constant C such that

inf
v̂

sup
P∈PΣ

ES∼Pn [sin(v̂(S), v1(Σ))] ≥ Cmin

(√
λ2
λ1
,
d2

nε

√
λ1λ2

(λ1 − λ2)2

)
. (C.27)

C.4 The analysis of Private Oja’s Algorithm

We analyze Private Oja’s Algorithm in Algorithm 11.

C.4.1 Proof of privacy in Lemma 4.3.1

We use following Theorem C.4.1 to prove our privacy guarantees.
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Theorem C.4.1 (Privacy amplification by shuffling [86, Theorem 3.8]). For any domain

D, let R(i) : S(1) × · · · × S(i−1) ×D → S(i) for i ∈ [n] (where S(i) is the range space of R(i))

be a sequence of algorithms such that R(i)(z1:i−1, ·) is an (ε0, δ0)-DP local randomizer for all

values of auxiliary inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let AS : Dn → S(1) × · · · × S(n) be the

algorithm that given a dataset x1:n ∈ Dn, samples a uniform random permutation π over [n],

then sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n] and outputs z1:n. Then for any

δ ∈ [0, 1] such that ε0 ≤ log
(

n
16 log(2/δ)

)
, As is (ε, δ +O(eεδ0n))-DP, where

ε = O

(
(1− e−ε0)

(√
eε0 log(1/δ)√

n
+
eε0

n

))
. (C.28)

Let R(t)(wt−1, Aπ(t)) := wt. Let ε0 =
√

2 log(1.25/δ0)

α
. We show R(t)(wt−1, ·) is an (ε0, δ0)-DP

local randomizer.

If there is no noise in each update step, the update rule is

w′
t ← wt−1 + ηtclipβ (Atwt−1) , (C.29)

wt ← wt−1/∥wt−1∥ (C.30)

The sensitivity of w′
t is 2βηt with respect to a difference in At. By Gaussian mechanism

in Lemma D.2.1 and post processing property of local differential privacy, we know wt is

(ε0, δ0)-DP local randomizer.

Assume that ε0 =

√
2 log(1.25/δ0)

α
≤ 1

2
. By Theorem C.4.1, for δ̂ ∈ [0, 1] such that ε0 ≤
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log
(

n

16 log(2/δ̂)

)
, Algorithm 11 is (ε̂, δ̂ +O(eε̂δ0n))-DP and for some constant c1 > 0,

ε̂ ≤ c1

(1− e−ε0)


√
eε0 log(1/δ̂)
√
n

+
eε0

n

 (C.31)

≤ c1

(e0.5 − e−0.5ε0)

√
log(1/δ̂)
√
n

+
eε0 − 1

n

 (C.32)

≤ c1

((1 + ε0)− (1− ε0/2))

√
log(1/δ̂)
√
n

+
1 + 2ε0 − 1

n

 (C.33)

= c1ε0

1

2

√
log(1/δ̂)

n
+

2

n

 (C.34)

≤ c2

√
log(1/δ0)

α

√
log(1/δ̂)

n
, (C.35)

for some absolute constant c2 > 0.

Set δ̂ = δ/2, δ0 = c3δ/(e
ε̂n) for some c3 > 0 and α = C ′ log(n/δ)/(ε

√
n). We have

ε̂ ≤ c2

√
log(eε̂n/(c3δ))

α

√
log(2/δ)

n
(C.36)

=

√
log(eε̂n/(c3δ)) log(2/δ)

C ′ log(n/δ)
· ε. (C.37)

For any ε ≤ 1, by Eq. (C.37), there exists some sufficiently large C ′ > 0 such that ε̂ ≤ ε.

Recall that we assume ε0 =
√

2 log(1.25/δ0)

α
≤ 1

2
. This means ε = O(

√
log(n/δ)

n
).

C.4.2 Proof of clipping in Lemma 4.3.2

Let zt = Atwt−1. Let µt := E[zt] = Σwt−1. By Lemma 4.2.1, we know for any ∥v∥ = 1, with

probability 1− ζ,

|v⊤(zt − µt)| ≤ Kγλ1 log
a(2/ζ) . (C.38)

Applying union bound over all basis vectors v ∈ {e1, . . . , ed} and all samples, we know
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with probability 1− ζ, for all j ∈ [d] and t ∈ [n]

|zt,j| ≤ Kγλ1 log
a(2nd/ζ) + λ1 . (C.39)

This implies that with probability 1− ζ, for all t ∈ [n], we have

∥zt∥ ≤ (Kγ loga(2nd/ζ) + 1)λ1
√
d . (C.40)

C.4.3 Proof of utility in Theorem 4.3.3

Lemma 4.3.2 implies that with probability 1−O(ζ), Algorithm 11 does not have any clipping.

Under this event, the update rule becomes

w′
t ← wt−1 + ηt (At + 2αβGt)wt−1 (C.41)

wt ← w′
t/∥w′

t∥ , (C.42)

where β = (Kγ loga(nd/ζ) + 1)λ1
√
d and each entry in Gt ∈ Rd×d is i.i.d. sampled from

standard Gaussian N (0, 1). This follows form the fact that ∥wt−1∥ = 1 and Gtwt−1 ∼ N (0, Id).

Let Bt = At + 2αβGt. We show Bt satisfies the three conditions in Theorem 4.2.2 ([119,

Theorem 4.12]). It is easy to see that E[Bt] = Σ from Assumption A.1. Next, we show upper

bound of max
{∥∥E [(Bt − Σ)(Bt − Σ)⊤

]∥∥
2
,
∥∥E [(Bt − Σ)⊤(Bt − Σ)

]∥∥
2

}
. We have

∥∥E [(Bt − Σ)(Bt − Σ)⊤
]∥∥

2

=
∥∥E[(At + 2αβGt − Σ)(At + 2αβGt − Σ)⊤]

∥∥
2

≤
∥∥E[(At − Σ)(At − Σ)⊤]

∥∥
2
+ 4α2β2∥E[GtG

⊤
t ]∥2

≤ V λ21 + 4α2β2C2d , (C.43)

where the last inequality follows from Lemma C.6.3 and C2 > 0 is an absolute constant. Let

Ṽ := V λ21 + 4α2β2C2d. Similarly, we can show that
∥∥E [(Bt − Σ)⊤(Bt − Σ)

]∥∥
2
≤ Ṽ .
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By Lemma C.6.2, we know with probability 1− ζ, for all t ∈ [T ],

∥Bt − Σ∥2

= ∥At + 2αβGt − Σ∥2

≤∥At − Σ∥2 + 2αβ∥Gt∥2

≤Mλ1 + 2C3αβ
(√

d+
√

log(n/ζ)
)
.

Let M̃ :=Mλ1 + 2C3αβ
(√

d+
√

log(n/ζ)
)
.

Under the event that ∥Bt − Σ∥2 ≤ M̃ for all t ∈ [n], we apply Theorem 4.2.2 with a

learning rate ηt = h
(λ1−λ2)(ξ+t)

where

ξ = 20max

 M̃h

(λ1 − λ2)
,

(
Ṽ + λ21

)
h2

(λ1 − λ2)2 log(1 + ζ
100

)

 . (C.44)

Then Theorem 4.2.2 implies that with probability 1− ζ,

sin2 (wn, v1) ≤
C log(1/ζ)

ζ2

(
d

(
ξ

n

)2h

+
h2Ṽ

(2h− 1) (λ1 − λ2)2 n

)
, (C.45)

for some positive constant C.

Set α = C′ log(n/δ)
ε
√
n

, the above bound implies

sin2 (wn, v1) ≤
C log(1/ζ)

ζ2

(
h2V λ21

(2h− 1) (λ1 − λ2)2 n
+

(Kγ loga(nd/ζ) + 1)2λ21 log
2(n/δ)d2h2

(2h− 1)(λ1 − λ2)2ε2n2
+ d

(
ξ̃
)h)

,

(C.46)

where ξ̃ = (ξ/n)2, and

ξ̃ := max

(
M2λ21h

2

(λ1 − λ2)2n2
+

(Kγ loga(nd/ζ) + 1)2λ21 log
3(n/δ)h2d2

(λ1 − λ2)2ε2n3
,

V 2λ41h
4

(λ1 − λ2)4 log2(1 + ζ
100

)n2
+

(Kγ loga(nd/ζ) + 1)4λ41 log
4(n/δ)h4d4

(λ1 − λ2)4 log2(1 + ζ
100

)ε4n4

+
λ41h

4

(λ1 − λ2)4 log2(1 + ζ
100

)n2

)
. (C.47)
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For ζ = O(1) and K = O(1), selecting h = c log n, and assuming

n ≥C

(
Mλ1 log(n)

λ1 − λ2
+

(Kγ loga(nd/ζ) + 1)2/3λ
2/3
1 log(n/δ) log2/3(n)d2/3

(λ1 − λ2)2/3ε2/3

+
V λ21(log(n))

2

(λ1 − λ2)2
+

(Kγ loga(nd/ζ) + 1)λ1 log(n/δ) log(n)d

(λ1 − λ2)ε
+
λ21 log

2(n)

(λ1 − λ2)2

)
, (C.48)

with large enough positive constants c, and C, we have ξ̃ ≤ 1 and dξ̃α ≤ 1/n2. Hence it is

sufficient to have

n = Õ
( λ21
(λ1 − λ2)2

+
Mλ1
λ1 − λ2

+
V λ21

(λ1 − λ2)2
+
d (γ + 1)λ1 log(1/δ)

(λ1 − λ2)ε

)
,

with a large enough constant.

C.5 The analysis of DP-PCA

We provides the proofs for Theorem 4.5.1, Theorem 4.6.1, and Lemma 4.6.2 that guarantees

the privacy and utility of DP-PCA.

C.5.1 Proof of Theorem 4.5.1 on the privacy and utility of DP-PCA

From Theorem 4.6.1 we know that Alg. 21 returns Λ̂ satisfying 2Λ̂ ≥ λ21∥Hu∥2 with high

probability. Then, from Lemma 4.6.2, we know that with high probability Alg 22 returns

an unbiased estimate of the gradient mean with added Gaussian noise. Under this case, the

update rule becomes

w′
t ← wt−1 + ηt

(
1

B

B∑
i=1

AB(t−1)+i + βtGt

)
wt−1 (C.49)

wt ← w′
t/∥w′

t∥ , (C.50)

where βt =
8K
√

2Λ̂t log
a(Bd/ζ)

√
2d log(2.5/δ)

εB
, Λ̂t denote the estimated eigenvalue of covariance of

the gradients at t-th iteration, and each entry in Gt ∈ Rd×d is i.i.d. sampled from standard

Gaussian N (0, 1). This follows form the fact that ∥wt−1∥ = 1 and Gtwt−1 ∼ N (0, Id).
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Let β :=
16Kγλ1 log

a(Bd/ζ)
√

2d log(2.5/δ)

εB
such that β ≥ βt, which follows from the fact that Λ̂ ≤

√
2λ21∥Hu∥2 ≤

√
2λ21γ

2 (Theorem 4.6.1 and Assumption A.4). LetBt = (1/B)
∑B

i=1AB(t−1)+i+

βtGt. We show Bt satisfies the three conditions in Theorem 4.2.2 ([119, Theorem 4.12]).

It is easy to see that E[Bt] = Σ from Assumption A.1. Next, we show upper bound of

max
{∥∥E [(Bt − Σ)(Bt − Σ)⊤

]∥∥
2
,
∥∥E [(Bt − Σ)⊤(Bt − Σ)

]∥∥
2

}
. We have

∥∥E [(Bt − Σ)(Bt − Σ)⊤
]∥∥

2

=

∥∥∥∥∥E[( 1B
B∑
i=1

AB(t−1)+i + βtGt − Σ)(
1

B

B∑
i=1

AB(t−1)+i + βtGt − Σ)⊤]

∥∥∥∥∥
2

≤

∥∥∥∥∥E[( 1B
B∑
i=1

AB(t−1)+i − Σ)(
1

B

B∑
i=1

AB(t−1)+i − Σ)⊤]

∥∥∥∥∥
2

+ β2∥E[GtG
⊤
t ]∥2

= V λ21/B + β2∥E[GtG
⊤
t ]∥2

≤ V λ21/B + β2C2d , (C.51)

where the last inequality follows from Lemma C.6.3 and C2 > 0 is an absolute constant.

Let Ṽ := V λ21/B + β2C2d. Similarly, we can show that
∥∥E [(Bt − Σ)⊤(Bt − Σ)

]∥∥
2
≤ Ṽ . By

Lemma C.6.5 and Lemma C.6.2, we know with probability 1− ζ, for all t ∈ [T ],

∥Bt − Σ∥2

=

∥∥∥∥∥ 1B
B∑
i=1

AB(t−1)+i + βtGt − Σ

∥∥∥∥∥
2

≤C3

(
Mλ1 log(dT/ζ)

B
+

√
V λ21 log(dT/ζ)

B
+ β

(√
d+

√
log(T/ζ)

))
.

Let M̃ := C3

(
Mλ1 log(dT/ζ)

B
+

√
V λ2

1 log(dT/ζ)

B
+ β

(√
d+

√
log(T/ζ)

))
. Under the event that

∥Bt − Σ∥2 ≤ M̃ for all t ∈ [T ], we apply Theorem 4.2.2 with a learning rate ηt = α
(λ1−λ2)(ξ+t)

where

ξ = 20max

 M̃α

(λ1 − λ2)
,

(
Ṽ + λ21

)
α2

(λ1 − λ2)2 log(1 + ζ
100

)

 . (C.52)
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Then Theorem 4.2.2 implies that with probability 1− ζ,

sin2 (wT , v1) ≤
C log(1/ζ)

ζ2

(
d

(
ξ

T

)2α

+
α2Ṽ

(2α− 1) (λ1 − λ2)2 T

)
, (C.53)

for some positive constant C. Using n = BT and Eq. (C.51), the above bound implies

sin2 (wT , v1) ≤
C log(1/ζ)

ζ2

(
α2V λ21

(2α− 1) (λ1 − λ2)2 n
+
K2γ2λ21 log

2a(nd/(Tζ)) log(1/δ)d2α2T

(2α− 1)(λ1 − λ2)2ε2n2
+ d

(
ξ̃
)α)

.

(C.54)

where ξ̃ = (ξ/T )2, and

ξ̃ := max

(
M2λ21α

2 log2(dT/ζ)

(λ1 − λ2)2n2
+
V λ21 log(dT/ζ)α

2

(λ1 − λ2)2nT
+
K2γ2λ21 log

2a(nd/(Tζ)) log(1/δ) log(T/ζ)α2d2

(λ1 − λ2)2ε2n2
,

V 2λ41α
4

(λ1 − λ2)4 log2(1 + ζ
100

)n2
+
K4γ4λ41 log

4a(nd/(Tζ)) log2(1/δ)α4d4T 2

(λ1 − λ2)4 log2(1 + ζ
100

)ε4n4

+
λ41α

4

(λ1 − λ2)4 log2(1 + ζ
100

)T 2

)
. (C.55)

For ζ = O(1) and K = O(1), selecting α = c log n, T = c′(log n)2, and assuming log n ≥

λ21/(λ1 − λ2)2 and

n ≥C

(
Mλ1 log(n) log(d log(n))

λ1 − λ2
+

√
V λ21 log(dT )

(λ1 − λ2)
+
γλ1 log

a(nd/ log(n))
√
log(1/δ) log(log(n)) log(n)d

(λ1 − λ2)ε

+
V λ21(log(n))

2

(λ1 − λ2)2
+
γλ1 log

a(nd/ log(n))
√
log(1/δ)(log(n))2d

(λ1 − λ2)ε

)
, (C.56)

with large enough positive constants c, c′, and C, we have ξ̃ ≤ 1 and dξ̃α ≤ 1/n2. Hence it is

sufficient to have

n = Õ
(
exp(λ21/(λ1 − λ2)2) +

Mλ1
λ1 − λ2

+
V λ21

(λ1 − λ2)2
+
d γ λ1

√
log(1/δ)

(λ1 − λ2)ε

)
,

with a large enough constant.
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C.5.2 Algorithm and proof of Theorem 4.6.1 on top eigenvalue estimation

Algorithm 21: Private Top Eigenvalue Estimation
Input: S = {gi}Bi=1, (ε, δ)-DP, failure probability ζ

1 Let g̃i ← g2i − g2i−1 for i ∈ 1, 2, . . . , ⌊B/2⌋. Let S̃ = {g̃i}⌊B/2⌋
i=1

2 Partition S̃ into k = C1 log(1/(δζ))/ε subsets and denote each dataset as Gj ∈ Rd×b,

where each dataset is of size b = ⌊B/2k⌋

3 Let λ(j)1 be the top eigenvalue of (1/b)GjG
⊤
j for ∀j ∈ [k]

4 Partition [0,∞) into

Ω←
{
. . . ,

[
2−2/4, 2−1/4

) [
2−1/4, 1

) [
1, 21/4

)
,
[
21/4, 22/4

)
, . . .

}
∪ {[0, 0]}

5 Run (ε, δ)-DP histogram learner of Lemma A.2.1 on {λ(j)1 }kj=1 over Ω

6 if all the bins are empty then Return ⊥

7 Let [l, r] be a non-empty bin that contains the maximum number of points in the DP

histogram

8 Return Λ̂ = l

Taking the difference ensures that g̃i is zero mean, such that we can directly use the top

eigenvalue of (1/b)GjG
⊤
j for j ∈ [k]. We compute a histogram over those k top eigenvalues.

This histogram is privatized by adding noise only to the occupied bins and thresholding

small entries of the histogram to be zero. The choice k = Ω(log(1/ζ)/ε) ensures that

the most occupied bin does not change after adding the DP noise to the histograms, and

k = Ω(log(1/δ)/ε) is necessary for handling unbounded number of bins. We emphasize that

we do not require any upper and lower bounds on the eigenvalue, thanks to the private

histogram learner from [38, 140] that gracefully handles unbounded number of bins.

The privacy guarantee follows from the privacy guarantee of the histogram learner provided

in Lemma A.2.1.

For utility analysis, we follow the analysis of [133, Theorem 3.1]. The main difference

is that we prove a smaller sample complexity sine we only need the top eigenvalue, and we

analyze a more general distribution family. The random vector g̃i is zero mean with covariance

2λ21Hu ∈ Rd×d, where Hu = E[(Ai − Σ)uu⊤(Ai − Σ)⊤]/λ21, and g̃i satisfies with probability
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1− ζ,

| ⟨g̃i, v⟩ | ≤ 2Kλ1
√
∥Hu∥2 loga(1/ζ) , (C.57)

which follows from Lemma 4.2.1. Applying union bound over all basis vectors v ∈ {e1, . . . , ed},

we know with probability 1− ζ,

∥g̃i∥ ≤ 2Kλ1
√
d∥Hu∥2 loga(d/ζ) .

We next show that conditioned on event E = {∥g̃i∥ ≤ 2Kλ1
√
d∥Hu∥2 loga(d/ζ)}, the covari-

ance E[g̃ig̃⊤i |E ] is close to the true covariance E[g̃ig̃⊤i ] = 2λ21Hu. Note that

E[g̃ig̃⊤i |E ] =
E[g̃ig̃⊤i I{∥g̃i∥ ≤ 2Kλ1

√
d∥Hu∥2 loga(d/ζ)}]

P(E)

⪯ E[g̃ig̃⊤i ]
P(E)

⪯ 2λ21Hu

1− ζ
. (C.58)

We next show the empirical covariance (1/b)
∑b

i=1 g̃ig̃
⊤
i concentrates around 2λ21Hu. First

of all, using union bound on Eq. (C.57), we have with probability 1− ζ, for all i ∈ [b] and

j ∈ [d],

|g̃ij| ≤ 2Kλ1
√
∥Hu∥2 loga(bd/ζ) .

Under the event that |g̃ij| ≤ 2Kλ1
√
∥Hu∥2 loga(nd/ζ) for all i ∈ [b], j ∈ [d], [203, Corrol-

lary 6.20] together with Eq. (C.58) implies

P

(∥∥∥∥∥1b
b∑

i=1

g̃ig̃
⊤
i − 2λ21Hu

∥∥∥∥∥
2

≥ α

)
≤ 2d exp

(
− bα2

8K2λ21∥Hu∥2 log2a( bdζ )d(2λ
2
1∥Hu∥2/(1− ζ) + α)

)
.

The above bound implies that with probability 1− ζ,∥∥∥∥∥1b
b∑

i=1

g̃ig̃
⊤
i − λ212Hu

∥∥∥∥∥
2

= O
(
Kλ21∥Hu∥2 loga(bd/ζ)

√
d log(d/ζ)

b
+K2λ21∥Hu∥2 log2a(bd/ζ)

d log(d/ζ)

b

)
.

This means if b = Ω(K2d log(dk/ζ) log2a(bdk/ζ)), then with probability 1 − ζ, for all

j ∈ [k], (1− 21/8)λ21∥Hu∥2 ≤ λ
(j)
1 ≤ (1 + 21/8)λ21∥Hu∥2. This means all of λ(j)1 must be within

21/4λ21∥Hu∥2 interval. Thus, at most two consecutive buckets are filled with λ(j)1 . By private

histogram from Lemma A.2.1, if k ≥ log(1/(δζ))/ε, one of those two bins are released. The

resulting total multiplicative error is bounded by 21/2.
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C.5.3 Algorithm and proof of Lemma 4.6.2 on DP mean estimation

Algorithm 22: Private Mean Estimation [140, 130]
Input: S = {gi}Bi=1, (ε, δ), target error α, failure probability ζ, approximate top

eigenvalue Λ̂

1 Let τ = 21/4K
√

Λ̂ loga(25).

2 for j=1, 2, . . . , d do

3 Run ( ε

4
√

2d log(4/δ)
, δ
4d
)-DP histogram learner of Lemma A.2.1 on {gij}i∈[B] over

Ω = {· · · , (−2τ,−τ ], (−τ, 0], (0, τ ], (τ, 2τ ], (2τ, 3τ ] · · · }.

4 Let [l, h] be the bucket that contains maximum number of points in the private

histogram

5 ḡj ← l

6 Truncate the j-th coordinate of gradient {gi}i∈[B] by

[ḡj − 3K
√

Λ̂ loga(Bd/ζ), ḡj + 3K
√

Λ̂ loga(Bd/ζ)].

7 Let g̃i be the truncated version of gi.

8 Compute empirical mean of truncated gradients µ̃ = (1/B)
∑B

i=1 g̃i and add Gaussian

noise: µ̂ = µ̃+N

(
0,

(
12K
√

Λ̂ loga(Bd/ζ)
√

2d log(2.5/δ)

εB

)2

Id

)
9 Return µ̂

The histogram learner is called d times, each with (ε/(4
√

2d log(4/δ)), δ/(4d))-DP guar-

antee, and the end-to-end privacy guarantee is (ε/2, δ/2) from Lemma 2.3.4 for ε ∈ (0, 0.9).

The sensitivity of the clipped mean estimate is ∆ =
√
d6K

√
Λ̂ loga(Bd/ζ). Gaussian mecha-

nism with covariance (2∆
√

2 log(2.5/δ)/ε)2Id satisfy (ε/2, δ/2)-DP from Lemma D.2.1 for

ε ∈ (0, 1). Putting these two together, with serial composition of Lemma C.2.2, we get the

desired privacy guarantee.

The proof of utility follows similarly as [160, Lemma D.2]. Let Il = (l
√

Λ̂, (l + 1)
√

Λ̂].

Denote the population probability of j-th coordinate at Il as hj,l = P(gij ∈ Il). Denote the

empirical probability as ĥj,l = 1
B

∑B
i=1 I(gij ∈ Il). Denote the private empirical probability

being released as h̃j,l.
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Fix j ∈ [d]. Let Ik be the bin that contains the µj . Then we know [µj−Kλ1
√
∥Hu∥2 loga(25), µj+

Kλ1
√
∥Hu∥2 loga(25)] ⊆ [µj − τ, µj + τ ] ⊂ (Ik−1 ∪ Ik ∪ Ik+1). By Lemma 4.2.1, we

know P(|gij − µj| ≥ τ) ≤ P(|gij − µj| ≥ Kλ1
√
∥Hu∥2 loga(25)) ≤ 0.04. This means

h(k−1),j + hk,j + h(k+1),j ≥ 0.96 and min(h(k−1),j, hk,j, h(k+1),j) ≥ 0.32.

By Dvoretzky-Kiefer-Wolfowitz inequality and an union bound over j ∈ [d], we have

that with probability 1 − ζ, maxj,l |hj,l − ĥj,l| ≤
√

log(d/ζ)/B. Using Lemma A.2.1, if

B = Ω((
√
d log(1/δ)/ε) log(d/(ζδ))), with probability 1−ζ, we have maxj,l |h̃j,l−ĥj,l| ≤ 0.005.

Thus, with our assumption on B, we can make sure with probability 1−ζ, maxj,l |h̃j,l−hj,l| ≤

0.01. Then we have min(h(k−1),j, hk,j, h(k+1),j)−0.01 ≥ 0.31 ≥ 0.04+0.01 ≥ maxl ̸=k−1,k,k1 hj,l+

0.01. This implies with probability 1 − ζ, the algorithm must pick one of the bins from

Ik−1, Ik, Ik+1. This means |ḡj − µj| ≤ 2τ ≤ 21.5Kλ1
√
∥Hu∥2 loga(25). By tail bound of

Lemma 4.2.1, we know for all j ∈ [d] and i ∈ [B], |gij − ḡj| ≤ |gij − µj| + |ḡj − µj| ≤

3Kλ1
√
∥Hu∥2 loga(Bd/ζ). This completes our proof.

C.6 Technical lemmas

Lemma C.6.1. Let x ∈ Rd ∼ N (0,Σ). Then there exists universal constant C such that

with probability 1− ζ,

∥x∥2 ≤ C Tr(Σ) log(1/ζ) . (C.59)

Proof. Let x̃ := Σ−1/2x. Then x̃ is also a Gaussian with x̃ ∼ N (0, Id). By Hanson-Wright

inequality ( [200, Theorem 6.2.1]), there exists universal constant c > 0 such that with

probability 1− ζ,

∥x∥2 = x̃⊤Σx̃ ≤ Tr(Σ) + c(∥Σ∥F + ∥Σ∥2) log(2/ζ) ≤ C Tr(Σ) log(1/ζ) . (C.60)

Lemma C.6.2 ([200, Theorem 4.4.5]). Let G ∈ Rd×d be a random matrix where each entry

Gij is i.i.d. sampled from standard Gaussian N (0, 1). Then there exists universal constant

C > 0 such that with probability 1− 2e−t2, ∥G∥2 ≤ C(
√
d+ t) for t > 0.
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Lemma C.6.3. Let G ∈ Rd×d be a random matrix where each entry Gij is i.i.d. sampled

from standard Gaussian N (0, 1). Then we have ∥E[GG⊤]∥2 ≤ C2d and ∥E[G⊤G]∥2 ≤ C2d.

Proof. By Lemma C.6.2, there exists universal constant C3 > 0 such that

P
(
∥G∥ ≥ C1(

√
d+ s)

)
≤ e−s2 , ∀s > 0 . (C.61)

Then

∥E[GG⊤]∥2 ≤ E[∥GG⊤∥2] (C.62)

≤ E[∥G∥22] (C.63)

=

∫ ∞

0

2rP(∥G∥2 ≥ r)dr ≤ C1d+ C3

∫ ∞

√
d

2re−
(r−

√
d)2

2 d (C.64)

= C1(d+
√
2πd+ 2) ≤ C2d , (C.65)

where C2 is an absolute constant. The proof for the second claim follows similarly.

Lemma C.6.4. Let x, y ∈ Sd−1
2 . Then

1− ⟨x, y⟩2 ≤ ∥x− y∥2 . (C.66)

If ∥x− y∥2 ≤ 2, then

1− ⟨x, y⟩2 ≥ 1

2
∥x− y∥2 . (C.67)

The following lemma follows from matrix Bernstein inequality [193].

Lemma C.6.5. Under A.1, A.2, and A.3, in Assumption 5, with probability 1− ζ,∥∥∥ 1
B

∑
i∈[B]

Ai − Σ
∥∥∥
2
= O

(√λ21V log(d/ζ)

B
+
λ1M log(d/ζ)

B

)
. (C.68)
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Appendix D

APPENDICES FOR CHAPTER 5

D.1 Related work

Differentially private optimization. There is a long line of work at the intersection of

differentially privacy and optimization [45, 142, 27, 182, 26, 210, 12, 85, 183, 16, 149, 131,

215, 91, 90, 216]. As one of the most well-studied problem in differentially privacy, DP Em-

pirical Risk Minimization (DP-ERM) aims to minimize the empirical risk (1/n)
∑

i∈S ℓ(xi;w)

privately. The optimal excess empirical risk for approximate DP (i.e., δ > 0) is known to be

GD ·
√
d/(εn), where the loss ℓ is convex and G-Lipschitz with respect to the data, and D

is the diameter of the convex parameter space [27]. This bound can be achieved by several

DP-SGD methods, e.g., [182, 27], with different computational complexities. Differentially

private stochastic convex optimization considers minimizing the population risk Ex∼D[ℓ(x,w)],

where data is drawn i.i.d. from some unknown distribution D. Using some variations of

DP-SGD, [26] and [85] achieves a population risk of GD(1/
√
n+
√
d/(εn)).

DP linear regression. Applying above results for the linear model, by observing thatG =

O(d) if D = O(1), the sample complexity required for achieving generalization error is n = d2.

Existing works for DP linear regression, for example [201, 142, 168, 71, 208, 88, 167, 206, 180, 5]

typically consider deterministic data. Under the i.i.d. Gaussian data setting, this translates

into a sample complexity of n = d3/2/(εα), where the extra d1/2 due to the fact that no

statistical assumptions are made. For i.i.d. sub-Weibull data, recent work [199] achieved

nearly optimal excess population risk d/n+ d2/(ε2n2) using DP-SGD with adaptive clipping,

up to extra factors on the condition number. This is closest to our work and we provide

detailed comparisons in Sections 5.2.1 and 5.3.2. Under Gaussian assumptions, [166] analyze

linear regression algorithm with sub-optimal guarantees. [77, 11, 7, 161] also consider using
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robust statistics like Tukey median [195] or Theil–Sen estimator [191] for differentially

private regression. However, [77] and [11] lack utility guarantees and [7] is restricted to one-

dimensional data. [161] achieves optimal sample complexity but takes exponential time. More

recently, [53] uses private linear regression scenario to show that correlated noise provably

improves upon vanilla DP-SGD.

Recent work [41] considers DP generalized linear model and provides a DP-SGD type

algorithm that achieves nearly optimal error d/n+ d2/(ε2n2). Their result is not comparable

to ours because they assume the norm of the gradient is bounded by a constant, while for

linear regression, the norm of the gradient is O(
√
d).

Robust linear regression. Robust mean estimation and linear regression have been

studied for a long time in the statistics community [196, 116, 195]. However, for high

dimensional data, these estimators generalizing the notion of median to higher dimensions

are typically computationally intractable. Recent advances in the filter-based algorithms, e.g.,

[65, 61, 62, 69, 49, 73], achieve nearly optimal guarantees for mean estimation in time linear

in the dimension of the dataset. Motivated by the filter algorithms, [70, 63, 174, 173, 51, 121]

achieved nearly optimal rate with d samples for robust linear regression, where both data

xi and label yi are corrupted. Another type of efficient methods that achieve similar rates

and sample complexity in polynomial time is based on sum-of-square proofs [143, 22], which

can be computationally expensive in practice. [217] and [161] achieves nearly optimal rates

using d samples but require exponential time complexities. An important special case of

adversarial corruption is when the adversary only corrupts the response variable in supervised

learning [141] and also in unsupervised learning [192]. For linear regression, when there

is only label corruptions, [31, 55, 144] achieve nearly optimal rates with O(d) samples.

Under the oblivious label corruption model, i.e., the adversary only corrupts a fraction of

labels in complete ignorance of the data, [30, 188] provide consistent estimator ŵn such that

limn→∞ E [ŵn − w∗]2 = 0 with O(d) samples.

Of these, [31, 55] are relevant to our work as they consider the same adversary model as

Asmp. 7. When xi’s and zi’s are sampled from N (0,Σ) and N (0, σ2), [55] proposed a Huber
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loss based estimator that achieves error rate of σ2α2 log2(n/δ) when n = Õ (κ2d/α2). Under

the same setting, [31] propoased a hard thresholding based estimator that achieves σ2α2 error

rate with Õ (d/α2) sample complexity. Our results in Thm. 5.3.1 match these rates, except

for the sub-optimal dependence on log2(1/α). Another line of work considered both label

and covariate corruptions and developed optimal algorithms for parameter recovery [70, 63,

174, 173, 51, 121, 143, 22, 217, 56]. The best existing efficient algorithm , e.g. [173], achieves

error rate of σ2α2 log(1/α) when n = Õ (d/α2), and the xi and zi are sampled from N (0, I)

and N (0, σ2).

Robust and private linear regression. Under the settings of both DP and data

corruptions, the only algorithm by [161] achieves nearly optimal rates α log(1/α)σ with

optimal sample complexities of d/α2 + d/(εα). However, their algorithm requires exponential

time complexities.

Robust and private mean estimation Based on sum-of-square proofs, recent works

[109, 6] are able to achieve nearly optimal rates α log(1/α) with Õ(d) samples for sub-Gaussian

data with known covariance.

D.2 Preliminary on differential privacy

Our algorithm builds upon two DP primitive: Gaussian mechanism and private histogram.

The Gaussian mechanism is one examples of a larger family of mechanisms known as output

perturbation mechanisms. In practice, it is possible to get better utility trade-off for a output

perturbation mechanism by carefully designing the noise, such as the stair-case mechanism

which are shown to achieve optimal utility in the variance [94] and also in hypothesis testing

[126]. However, the gain is only by constant factors, which we do not try to optimize in this

work. We provide a reference for the Gaussian mechanism and private histogram below.

Lemma D.2.1 (Gaussian mechanism [79]). For a query q with sensitivity ∆q, the Gaussian

mechanism outputs q(S) +N (0, (∆q

√
2 log(1.25/δ)/ε)2Id) and achieves (ε, δ)-DP.

When the database is accessed multiple times, we use the following composition theorems
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to account for the end-to-end privacy leakage.

Lemma D.2.2 (Parallel composition [165]). Consider a sequence of interactive queries

{qk}Kk=1 each operating on a subset Sk of the database and each satisfying (ε, δ)-DP. If Sk’s

are disjoint then the composition (q1(S1), q2(S2), . . . , qK(SK)) is (ε, δ)-DP.

Lemma D.2.3 (Serial composition [79]). If a database is accessed with an (ε1, δ1)-DP

mechanism and then with an (ε2, δ2)-DP mechanism, then the end-to-end privacy guarantee

is (ε1 + ε2, δ1 + δ2)-DP.

In most modern privacy analysis of iterative processes, advanced composition theorem

from [128] gives tight accountant for the end-to-end privacy budget. It can be improved for

specific mechanisms using tighter accountants, e.g., in [169, 97, 207, 219, 98].

Lemma D.2.4 (Advanced composition [128]). For ε ≤ 0.9, an end-to-end guarantee

of (ε, δ)-differential privacy is satisfied if a database is accessed k times, each with a

(ε/(2
√

2k log(2/δ)), δ/(2k))-differential private mechanism.

D.3 Adaptive clipping for the gradient norm

In the ideal clipping thresholds for the norm and the residual, there are unknown terms which

we need to estimate adaptively, (∥wt − w∗∥2Σ + σ2) and Tr(Σ), up to constant multiplicative

errors. We privately estimate the (squared and shifted) distance to optimum, (∥wt−w∗∥2Σ+σ2),

with Alg. 23 and privately estimate the average input norm, E[∥xi∥2] = Tr(Σ), with Alg. 24

in App. D.6. These are used to get the clipping thresholds in Alg. 13. We propose a trimmed

mean approach below for distance estimation. The norm estimator is similar and is provided

in App. D.6.

Private distance estimation using private trimmed mean. The goal is to estimate the

(shifted) distance to optimum, ∥wt − w∗∥2Σ + σ2, up to some constant multiplicative error.

Note that this is precisely the task of estimating the variance of the residual bi = yi − w⊤
t xi.

When there is no adversarial corruption and no privacy constraint, we can simply use the
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empirical variance estimator (1/n)
∑

i∈[n](yi − w⊤
t xi)

2 to obtain a good estimate. However,

the empirical variance estimator is not robust against adversarial corruptions since one outlier

can make the estimate arbitrarily large. A classical idea is using the trimmed estimator

from [196], which throws away the 2α fraction of residuals bi with the largest magnitude. For

datasets with resilience property as assumed in this work, this will guarantee an accurate

estimate of the distance to optimum in the presence of α fraction of corruptions.

To make the estimator private, it is tempting to simply add a Laplacian noise to the

estimate. However, the sensitivity of the trimmed estimator is unknown and depends on the

distance to the optimum that we aim to estimate; this makes it challenging to determine

the variance of the Laplacian noise we add. Instead, we propose to partition the dataset

into k batches, compute an estimate for each batch, and form a histogram with over those k

estimates. Using a private histogram mechanism with geometrically increasing bin sizes, we

propose using the bin with the most estimates to guarantee a constant factor approximation

of the distance to the optimum. We describe the algorithm as follows.

Algorithm 23: Robust and Private Distance Estimator
Input: S2 = {(xi, yi)}ni=1, current wt, (ε0, δ0), failure probability ζ,

1 Let bi ← (yi − w⊤
t xi)

2, ∀i ∈ [n] and S̃ ← {bi}ni=1.

2 Partition S̃ into k = ⌈C1 log(1/(δ0ζ))/ε0⌉ subsets of equal size and let Gj be the j-th

partition.

3 For j ∈ [k], denote ψj as the 0.9-quantile of Gj and ϕj ← 1
|Gj |
∑

i∈Gj
bi1{bi ≤ ψj}.

4 Partition [0,∞) into geometrically increasing intervals

Ω := {. . . , [2−1, 1) , [1, 2) , [2, 22) , . . .} ∪ {[0, 0]}

5 Run (ε0, δ0)-DP histogram of Lemma A.2.1 on {ϕj}kj=1 over Ω

6 if all the bins are empty then Return ⊥

7 Let [ℓ, r] be a non-empty bin that contains the maximum number of points in the DP

histogram

8 return ℓ
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This algorithm gives an estimate of the distance up to a constant multiplicative error as

we show in the following theorem. We provide a proof in App. D.4.

Theorem D.3.1. Alg. 23 is (ε0, δ0)-DP. For an αcorrupt-corrupted dataset S2 that satisfy

Asmp. 6 and Asmp. 7 and any ζ ∈ (0, 1), if

n = O

(
(d+ log((log(1/(δ0ζ)))/ε0ζ))(log(1/(δ0ζ)))

ε0

)
, (D.1)

with a large enough constant, then with probability 1− ζ, Alg. 23 returns ℓ such that 1
4
(∥wt −

w∗∥2Σ + σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

Note that in Thm. D.3.1, we only need to estimate distance up to a constant multiplicative

error, as opposed to an error that depends on our final end-to-end desired level α. Consequently,

we require smaller sample complexity (that doesn’t depend on α) than other parts of our

approach.

Remark D.3.2. While DP-STAT (Algorithm 3 in [199]) can also be used to estimate

∥wt − w∗∥Σ + σ (and it would not change the ultimate sample complexity in its dependence

on κ, d, ε, and n), there are three important improvements we make: (i) DP-STAT requires

the knowledge of ∥w∗∥Σ + σ; (ii) our utility guarantee has improved dependence in K and

log(n); and (iii) Alg. 23 is robust against label corruption.

Upper bound on clipped good data points. Using the above estimated distance to

the optimum in selecting a threshold θt, we also need to ensure that we do not clip too many

clean data points. The tolerance in our algorithm to reach the desired level of accuracy is

clipping O(α) fraction of clean data points. This is ensured by the following lemma, and we

provide a proof in App. D.5.

Lemma D.3.3. Under Asmp. 6 and for all t ∈ [T ], if θt ≥
√

9C2K2 log(1/(2α))·(∥w∗ − wt∥Σ + σ)

then
∣∣{i ∈ S3 ∩ Sgood :

∣∣w⊤
t xi − yi

∣∣ ≥ θt
}∣∣ ≤ αn.
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D.4 Proof of Thm. D.3.1 on the private distance estimation

We present our formal theorem for the general sub-Weibull distribution as follows.

Theorem D.4.1. Alg. 23 is (ε0, δ0)-DP. For an αcorrupt-corrupted dataset S2 satisfying

Asmp. 8 and Asmp. 7 and an upper bound ᾱ on αcorrupt that satisfy 37C2K
2 ·ᾱ log2a(1/(6ᾱ)) ≤

1/4 and any ζ ∈ (0, 1), if

n = O

(
(d+ log((log(1/(δ0ζ)))/ε0ζ))(log(1/(δ0ζ)))

ᾱ2ε0

)
, (D.2)

with a large enough constant then, with probability 1− ζ, Alg. 23 returns ℓ such that 1
4
(∥wt −

w∗∥2Σ + σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

We first analyze the privacy. Changing a data point (xi, yi) can affect at most one partition

in {Gj}kj=1. This would affect at most two histogram bins, increasing the count of one bin by

one and decreasing the count in another bin by one. Under such a bounded ℓ1 sensitivity, the

privacy guarantees follows from Lemma A.2.1.

Next, we analyze the utility. In the (private) histogram step, we claim that at most

only two consecutive bins can be occupied by any ϕj’s. This is also true for the private

histogram, because the private histogram of Lemma A.2.1 adds noise to non-empty bins only.

By Lemma A.2.1, if k ≥ c log(1/(δ0ζ0))/ε0, one of these two intervals (the union of which

contains the true distance ∥wt − w∗∥2Σ + σ2) is released. This results in a multiplicative error

bound of four, as the bin size increments by a factor of two.

To show that only two bins are occupied, we show that all ϕj’s are close to the true

distance. We first show that each partition contains at most 2αcorrupt fraction of corrupted sam-

ples and thus all partitions are (2ᾱ, 6ᾱ, 6ρ̂, 6ρ̂, 6ρ̂, 6ρ̂′)-corrupt good, where ρ̂(C2, K, a, ᾱ) =

C2K
2ᾱ log2a(1/6ᾱ) and ρ̂′(C2, K, a, ᾱ) = C2Kᾱ loga(1/6ᾱ), as defined in Definition D.10.6.

Let B = ⌊n/k⌋ be the sample size in each partition. Let ζ0 = ζ/2. Since the partition

is drawn uniformly at random, for each partition Gj, the number of corrupted samples α′n

satisfies α′n ∼ Hypergeometric(n, αcorruptn, n/k). The tail bound gives that with probability
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1− ζ0,

α′ ≤ αcorrupt + (k/n) log(2/ζ0) ≤ 2ᾱ ,

where the last inequality follows from the fact that the corruption level is bounded by

αcorruption ≤ ᾱ and the assumption on the sample size in Eq. (D.2) which implies n ≳

log(1/(δ0ζ0)) log(1/ζ0)/(ᾱε0).

For a particular subset Gj , Lemma D.10.7 implies that if B = O((d+ log(1/ζ0))/ᾱ
2), then

Gj is (α′, 6ᾱ, 6ρ̂, 6ρ̂, 6ρ̂, 6ρ̂′)-corrupt good set with respect to (w∗,Σ, σ) from Asmp. 8. This

means that there exists a constant C2 > 0 such that for any T1 ⊂ Sgood with |T1| ≥ (1−6ᾱ)B,

we have ∣∣∣∣∣ 1

|T1|
∑
i∈T1

⟨xi, w∗ − wt⟩2 − ∥w∗ − wt∥2Σ

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))∥w∗ − wt∥2Σ ,

∣∣∣∣∣ 1

|T1|
∑
i∈T1

z2i − σ2

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))σ2 ,

and ∣∣∣∣∣ 1

|T1|
∑
i∈T1

zi ⟨xi, w∗ − wt⟩

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))∥w∗ − wt∥Σσ .

Note that for i ∈ Sgood, bi = z2i + 2zi(w
∗ − wt)

⊤xi + (w∗ − wt)
⊤xix

⊤
i (w

∗ − wt). By the

triangular inequality, we know, under above conditions,∣∣∣∣∣ 1

|T1|
∑
i∈T1

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣ ≤ 12C2K
2ᾱ log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (D.3)

Which also implies that any subset T2 ⊂ Sgood and |T2| ≤ 6ᾱ|Sgood|, we have∣∣∣∣∣ 1

|T2|
∑
i∈T2

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣ ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (D.4)

Recall that ψj is the (1 − 3ᾱ)-quantile of the dataset Gj. Let T := {i ∈ Sgood : bi ≤ ψj},

where with a slight abuse of notations, we use Sgood to denote the set of uncorrupted samples
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corresponding to Gj and Sbad to denote the set of corrupted samples corresponding to Gj.

Since the corruption is less than α′, we know (1 − 3ᾱ − α′)B ≤ |T | ≤ (1 − 3ᾱ + α′)B. By

our assumption that α′ ≤ 2ᾱ, we have |Ē| ≥ (3ᾱ− α′)B ≥ ᾱB where Ē := Sgood \ E. Using

Eq (D.4) with a choice of T2 = Ē, we get that

min
i∈Ē

bi − ∥w∗ − wt∥2Σ − σ2 ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (D.5)

This implies that

ψj ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2). (D.6)

Hence

∣∣ϕj − ∥w∗ − wt∥2Σ − σ2
∣∣ =

∣∣∣∣∣∣ 1B
∑
i∈Gj

bi · 1{bi ≤ ψj} − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣∣
=

∣∣∣∣∣ 1B∑
i∈T

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣+
∣∣∣∣∣ 1B ∑

i∈Sbad

bi · 1{bi ≤ ψj}

∣∣∣∣∣
≤ 37C2K

2 · ᾱ log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2), (D.7)

where we applied Eq (D.6) and Eq (D.3) in the last inequality.

On a fixed partition Gj , we showed that if B = O((d+log(1/ζ0))/ᾱ
2) then, with probability

1 − ζ0, |ϕj − ∥w∗ − wt∥2Σ − σ2| ≤ 1
4
(∥w∗ − wt∥2Σ + σ2), which follows from our assumption

that 37C2K
2 · ᾱ log2a(1/(6ᾱ)) ≤ 1/4. Using an union bound for all subsets, we know if

B = O((d+ log(k/ζ0))/ᾱ
2), then 1− ζ0, |ϕj − ∥w∗ −wt∥2Σ − σ2| ≤ 1

4
(∥w∗ −wt∥2Σ + σ2) holds

for all j ∈ [k]. Since the upper bound lower bound ratio is 5/3 which is less than 2. All the

ϕj must lie in two bins, which will result in a factor of 4 multiplicative error.

D.5 Proof of Lemma D.3.3 on the upper bound on clipped good points

Let ρ̂(C2, K, a, α) = 2C2K
2α log2a(1/(2α)) and ρ̂′(C2, K, a, α) = 2C2Kα loga(1/(2α)). Lemma D.10.7

implies that if n = O((d+ log(1/ζ))/(α2)) with a large enough constant, then there exists



288

a universal constant C2 such that S3 is, with respect to (w∗,Σ, σ), (αcorrupt, 2α, ρ̂, ρ̂, ρ̂, ρ̂
′)-

corrupt good. The rest of the proof is under this (deterministic) resilience condition. By the

resilience property in Eq (5.6), we know for any T ⊂ Sgood with |T | ≥ (1− 2α)n,∣∣∣∣∣ 1|T |∑
i∈T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)− ∥w∗ − wt∥2Σ

∣∣∣∣∣ ≤ 2C2K
2α log2a(1/(2α))∥w∗ − wt∥2Σ .

(D.8)

Let E :=
{
i ∈ Sgood : (w∗ − wt)

⊤xix
⊤
i (w

∗ − wt) > ∥w∗ − wt∥2Σ(8C2K
2 log2a(1/(2α)) + 1)

}
.

Denote α̃ := |E|/n. We want to show that α̃ ≤ α/2. Let T be the set of points that

contain the smallest 1 − α/2 fraction in {(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)}i∈Sgood
. We know

|T | = (1 − α/2)n ≥ (1 − 2α)n. To prove by contradiction, suppose α̃ > α/2, which

means all data points in Sgood \T are larger than ∥w∗−wt∥2Σ(8C2K
2 log2a(1/(2α))+1). From

resilience property in Eq (D.8), we know

1

n

∑
i∈Sgood

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)

=
1

n

∑
i∈T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt) +
1

n

∑
i∈Sgood\T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)

≥
(
1− α

2

)(
1− 2C2K

2α log2a(
1

2α
)

)
∥w∗ − wt∥2Σ +

α

2
(8C2K

2 log2a(
1

2α
) + 1)∥w∗ − wt∥2Σ

> (1 + 2C2K
2α log2a(1/2α))∥w∗ − wt∥2Σ ,

which contradicts Eq (D.8) for Sgood. This shows α̃ ≤ α/2.

Similarly, we can show that
∣∣{i ∈ Sgood : z2i > σ2(8C2K

2 log2a(1/(2α)) + 1)
}∣∣ ≤ α/2. This

means the rest (1− α)n points in Sgood satisfies
√
(w∗ − wt)⊤xix⊤i (w

∗ − wt) + |zi| ≤ (∥wt −

w∗∥+ σ)
√
(8C2K2 log2a(1/(2α)) + 1). Note that for all i ∈ Sgood, we have

|x⊤i wt − yi| =
∣∣x⊤i (wt − w∗)− zi

∣∣
≤ |x⊤i (wt − w∗)|+ |zi|

≤
(√

(w∗ − wt)⊤xix⊤i (w
∗ − wt) + |zi|

)
.
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By our assumption that C2K
2 log2a(1/(2ᾱ)) ≥ 1 which follows from Asmp. 7, we have∣∣∣∣{i ∈ Sgood : |x⊤i wt − yi| ≤ (∥wt − w∗∥Σ + σ)

√
9C2K2 log2a(1/(2α))

}∣∣∣∣ ≥ (1− α)n . (D.9)

D.6 Private norm estimation: algorithm and analysis

Algorithm 24: Private Norm Estimator
Input: S1 = {(xi, yi)}ni=1, target privacy (ε0, δ0), failure probability ζ.

1 Let ai ← ∥xi∥2. Let S̃ = {ai}ni=1.

2 Partition S̃ into k = ⌊C1 log(1/(δ0ζ))/ε⌋ subsets of equal size and let Gj be the j-th

partition.

3 For each j ∈ [k], denote ψj = (1/|Gj|)
∑

i∈Gj
ai.

4 Partition [0,∞) into bins of geometrically increasing intervals

Ω :=
{
. . . ,

[
2−2/4, 2−1/4

)
,
[
2−1/4, 1

)
,
[
1, 21/4

)
,
[
21/4, 22/4

)
, . . .

}
∪ {[0, 0]}

5 Run (ε0, δ0)-DP histogram learner of Lemma A.2.1 on {ψj}kj=1 over Ω

6 if all the bins are empty then Return ⊥

7 Let [ℓ, r] be a non-empty bin that contains the maximum number of points in the DP

histogram

8 Return ℓ

Lemma D.6.1. Alg. 24 is (ε0, δ0)-DP. If {xi}ni=1 are i.i.d. samples from (K, a)-sub-Weibull

distributions with zero mean and covariance Σ and

n = Õ

(
log2a(1/(δ0ζ))

ε0

)
,

with a large enough constant then Alg. 24 returns Γ such that, with probability 1− ζ,

1√
2
Tr(Σ) ≤ Γ ≤

√
2Tr(Σ) .

We provide a proof in App. D.6.1.
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D.6.1 Proof of Lemma D.6.1 on the private norm estimation

By Hanson-Wright inequality in Lemma D.10.1 and union bound, there exists constant c > 0

such that with probability 1− ζ,

|1
b

b∑
i=1

∥xi∥2 − Tr(Σ)| ≤ cK2Tr(Σ)

(√
log(1/ζ)

b
+

log2a(1/ζ)

b

)
, (D.10)

This means there exists a constant c′ > 0 such that if b ≥ c′K2 log2a(k/ζ), then for all

j ∈ [k].

|ψj − Tr(Σ)| ≤ 21/8Tr(Σ) (D.11)

With probability 1 − ζ, {ψj}kj=1 lie in interval of size 21/4Tr(Σ). Thus, at most two

consecutive bins are filled with {ψj}kj=1. Denote them as I = I1 ∪ I2. Our analysis indicates

that P(ψi ∈ I) ≥ 0.99. By private histogram in Lemma A.2.1, if k ≥ log(1/(δζ))/ε,

|p̂I − p̃I | ≤ 0.01 where p̂I is the empirical count on I and p̃I is the noisy count on I. Under

this condition, one of these two intervals are released. This results in multiplicative error of
√
2.

D.7 Proof of the resilience in Lemma D.10.7

We apply following resilience property for general distribution characterized by Orlicz function

from [217].

Lemma D.7.1 ([217, Theorem 3.4]). Dataset S = {xi ∈ Rd}ni=1 consists i.i.d. samples from

a distribution D. Suppose D is zero mean and satisfies Ex∼D

[
ψ
(

(v⊤x)2

κ2Ex∼D[(v⊤x)2]

)]
≤ 1 for all

v ∈ Rd, where ψ(·) is Orlicz function. Let Σ = Ex∼D[xx
⊤]. Suppose α ≤ ᾱ, where ᾱ satisfies

(1 + ᾱ/2) · 2κ2ᾱψ−1(2/ᾱ) < 1/3, ᾱ ≤ 1/4. Then there exists constant c1, C2 such that if

n ≥ c1((d+ log(1/ζ))/(α2)), with probability 1− ζ, for any T ⊂ S of size |T | ≥ (1− α)n, the

following holds: ∥∥∥∥∥Σ−1/2

(
1

|T |
∑
i∈T

xi

)∥∥∥∥∥ ≤ C2κα
√
ψ−1(1/α) (D.12)
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and ∥∥∥∥∥Id − Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2

∥∥∥∥∥
2

≤ C2κ
2αψ−1(1/α) . (D.13)

Let ψ(t) = et
1/(2a) . It is easy to see that ψ(t) is a valid Orlicz function. Then if xi is

(K, a)-sub-Weibull, then we know∥∥∥∥∥Σ−1/2

(
1

|T |
∑
i∈T

xi

)∥∥∥∥∥ ≤ C2Kα

√
log2a(1/α) , (D.14)

and ∥∥∥∥∥Id − Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2

∥∥∥∥∥
2

≤ C2K
2α log2a(1/α) . (D.15)

This implies

(1− C2K
2α log2a(1/α))Id ⪯ Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2 ⪯ (1 + C2K

2α log2a(1/α))Id .

(D.16)

Using the fact that C⊤AC ⪯ C⊤BC if A ⪯ B, we know

(1− C2K
2α log2a(1/α))Σ ⪯ 1

|T |
∑
i∈T

xix
⊤
i ⪯ (1 + C2K

2α log2a(1/α))Σ . (D.17)

This implies resilience properties of xi and zi in (5.6) and (5.7) in Definition 5.5.1

respectively. Next, we show the resilience property of xizi.

By ab ≤ a2

2
+ b2

2
, for any fixed v ∈ Rd,

E[exp

((
| ⟨xizi, v⟩ |2

K4σ2v⊤Σv

)1/(4a)
)
] ≤ E

[
exp

((
| ⟨xi, v⟩ |2

K2v⊤Σv

)1/(2a)

/2

)
exp

((
z2i

K2σ2

)1/(2a)

/2

)]
(D.18)

≤ 1

2

(
E

[
exp

((
| ⟨xi, v⟩ |2

K2v⊤Σv

)1/(2a)
)]

+ E

[
exp

((
z2i

K2σ2

)1/(2a)
)])

(D.19)

≤ 2 . (D.20)
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Since E[xizi] = 0, [217, Lemma E.3] implies that there exists constant c1, C2 > 0 such that

if n ≥ c1(d+ log(1/ζ))/(α2), with probability 1− ζ, for any T ⊂ Sgood of size |T | ≥ (1− α)n,∥∥∥∥∥Σ−1

(
1

|T |
∑
i∈T

xizi

)∥∥∥∥∥ ≤ C2K
2σα log2a(1/α) . (D.21)

D.8 Proof of Thm. 26 on the analysis of Alg. 13

We provide our main theorem under the following sub-Weibull assumptions.

Assumption 8 ((Σ, σ2, w∗, K, a)-model). A multiset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 of n

i.i.d. samples is from a linear model yi = ⟨xi, w∗⟩+ zi, where the input vector xi is zero mean,

E[xi] = 0, with a positive definite covariance Σ := E[xix⊤i ] ≻ 0, and the (input dependent) label

noise zi is zero mean, E[zi] = 0, with variance σ2 := E[z2i ]. We further assume E[xizi] = 0,

which is equivalent to assuming that the true parameter w∗ = Σ−1E[yixi]. We assume that

the marginal distribution of xi is (K, a)-sub-Weibull and that of zi is also (K, a)-sub-Weibull,

as defined below.

Sub-Weibull distributions provide Gaussian-like tail bounds determining the resilience of

the dataset in Lemma D.10.7, which our analysis critically relies on and whose necessity is

justified in Sec. 5.3.4.

Definition D.8.1 (sub-Weibull distribution [148] ). For some K, a > 0, we say a random vec-

tor x ∈ Rd is from a (K, a)-sub-Weibull distribution if for all v ∈ Rd, E
[
exp

((
⟨v,x⟩2

K2E[⟨v,x⟩2]

)1/(2a))]
≤

2.

Theorem D.8.2. Alg. 13 is (ε, δ)-DP. Under (Σ, σ2, w∗, K, a)-model of Asmp. 8 and αcorrupt-

corruption of Assumption 7 and for any failure probability ζ ∈ (0, 1) and target error rate

α ≥ αcorrupt. We further assume that the corruption level is bounded by αcorrupt ≤ ᾱ, where

ᾱ is a known positive constant satisfying ᾱ ≤ 1/10, 72C2K
2 ᾱ log2a(1/(6ᾱ)) log(κ) ≤ 1/2,

and 2C2K
2 log2a(1/(2ᾱ)) ≥ 1 for the (K, a)-sub-Weibull distribution of interest and a positive
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constant C2 defined in Lemma D.10.7 that only depends on (K, a). If the sample size is large

enough such that

n = Õ

(
K2d log2a+1

(1
ζ

)
+
d+ log(1/ζ)

α2
+
K2dT 1/2 log(1

δ
) loga(1

ζ
)

εα

)
, (D.22)

with a large enough constant where Õ hides poly-logarithmic terms in d, n, and κ, then

the choices of a step size η = 1/(Cλmax(Σ)) for any C ≥ 1.1 and the number of iterations,

T = Θ̃ (κ log (∥w∗∥)) for a condition number of the covariance κ := λmax(Σ)/λmin(Σ), ensures

that, with probability 1− ζ, Alg. 13 achieves

Eν1,··· ,νt∼N (0,Id)

[
∥wT − w∗∥2Σ

]
= Õ

(
K4σ2α2 log4a

( 1
α

))
, (D.23)

where the expectation is taken over the noise added for DP, and Θ̃(·) hides logarithmic terms

in K, σ, d, n, 1/ε, log(1/δ), 1/α, and κ.

The main theorem builds upon the following lemma that analyzes a (stochastic) gradient

descent method, where the randomness is from the DP noise we add and the analysis only

relies on certain deterministic conditions on the dataset including resilienece and concentration.

Thm. D.8.2 follows in a straightforward manner by collecting Thm. D.3.1, Lemma D.6.1,

Lemma D.3.3, and Lemma D.8.3.

Lemma D.8.3. Alg. 13 is (ε, δ)-DP. Under Assumptions 8 and 7 for any ζ ∈ (0, 1) and

α ≥ αcorrupt satisfying K2α log2a(1/α) log(κ) ≤ c for some universal constant c > 0, if

distance threshold is small enough such that

θt ≤ 3C
1/2
2 K loga(1/(2α)) · (∥w∗ − wt∥Σ + σ) , (D.24)

and large enough such that the number of clipped clean data points is no larger than αn, at

every round, the norm threshold is large enough such that

Θ ≥ K
√
Tr(Σ) loga(n/ζ) , (D.25)
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and sample size is large enough such that

n = O

(
K2d log(d/ζ) log2a(n/ζ) +

d+ log(1/ζ)

α2
+
K2T 1/2d log(T/δ) loga(n/(αζ))

εα

)
,

(D.26)

with a large enough constant, then the choices of a step size, η = 1/(Cλmax(Σ)) for some

C ≥ 1.1, and the number of iterations, T = Θ̃ (κ log (∥w∗∥)) , ensures that Alg. 13 outputs

wT satisfying the following with probability 1− ζ:

Eν1,··· ,νt∼N (0,Id)[∥wT − w∗∥2Σ] ≲ K4σ2 log2(κ)α2 log4a(1/α) , (D.27)

where the expectation is taken over the noise added for DP and Θ̃(·) hides logarithmic terms

in K, σ, d, n, 1/ε, log(1/δ), 1/α.

Proof of Lemma D.8.3. We first prove a set of deterministic conditions on the clean dataset,

which is sufficient for the analysis of the gradient descent.

Step 1: Sufficient deterministic conditions on the clean dataset. Let Sgood

be the uncorrupted dataset for S3 and Sbad be the corrupted datapoints in S3. Let G :=

Sgood ∩ S3 = S3 \ Sbad denote the clean data that remains in the input dataset. Let

λmax = ∥Σ∥2. Define Σ̂ := (1/n)
∑

i∈G xix
⊤
i , B̂ := Id − ηΣ̂. Lemma D.10.4 implies that if

n = O(K2d log(d/ζ) log2a(n/ζ)), then

0.9Σ ⪯ Σ̂ ⪯ 1.1Σ . (D.28)

We pick step size η such that η ≤ 1/(1.1λmax) to ensure that η ≤ 1/∥Σ̂∥2. Since the covariates

{xi}i∈S are not corrupted, from Lemma D.10.3, we know with probability 1− ζ, for all i ∈ S3,

∥xi∥2 ≤ K2Tr(Σ) log2a(n/ζ) . (D.29)

Lemma D.10.7 implies that if n = O((d + log(1/ζ))/(α2)), then there exists a universal

constant C2 such that S3 is, following Definition D.10.6, with respect to (w∗,Σ, σ),

(αcorrupt, α, C2K
2α log2a(1/α), C2K

2α log2a(1/α), C2K
2α log2a(1/α), C2Kα loga(1/α))-corrupt
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good. Such corrupt good sets have a sufficiently large, 1 − αcorrupt, fraction of points that

satisfy a good property that we need: resilience. The rest of the proof is under Eq (D.28),

Eq (D.29), and that Sgood is resilient.

Step 2: Upper bounding the deterministic noise in the gradient. In this step,

we bound the deviation of the gradient from its mean. There are several sources of deviation:

(i) clipping, (ii) adversarial corruptions, and (iii) randomness of the data noise and privacy

noise. We will show that deviations from all these sources can be controlled deterministically

under the corrupt-goodness (i.e., resilience).

Let ϕt = (
√

2 log(1.25/δ0)Θθt)/(ε0n), which ensures that we add enough noise to guarantee

(ε0, δ0)-DP for each step of gradient descent. This follows from the standard Gaussian

mechanism in Lemma D.2.1 and the fact that each gradient is clipped to the norm of Θθt,

resulting in a DP sensitivity of Θθt/n. The fact that this sensitivity scales as 1/n is one

of the main reasons for the performance gain we get over [199] that uses a minimatch of

size n/κ with sensitivity scaling as κ/n. Define g(t)i := xi(x
⊤
i wt − yi). For i ∈ Sgood, we

know yi = x⊤i w
∗ + zi. Let g̃(t)i = clipΘ(xi)clipθt(x

⊤
i wt − yi). Note that under Eq (D.29),

clipΘ(xi) = xi for all i ∈ S3.

From Alg. 13, we can write one-step update rule as follows:

wt+1 − w∗

=wt − η

(
1

n

∑
i∈S

g̃
(t)
i + ϕtνt

)
− w∗

=

(
I− η

n

∑
i∈G

xix
⊤
i

)
(wt − w∗) +

η

n

∑
i∈G

xizi +
η

n

∑
i∈G

(g
(t)
i − g̃

(t)
i )− ηϕtνt −

η

n

∑
i∈Sbad

g̃
(t)
i

(D.30)

Let Et := {i ∈ G : θt ≤ |x⊤i wt − yi|} be the set of clipped clean data points such that∑
i∈G(g

(t)
i −g̃

(t)
i ) =

∑
i∈Et

(g
(t)
i −g̃

(t)
i ). We define v̂ := (1/n)

∑
i∈G xizi, u

(1)
t := (1/n)

∑
i∈Et

xix
⊤
i (wt−

w∗), u(2)t := (1/n)
∑

i∈Et
−xizi, and u(3)t := (1/n)

∑
i∈Sbad∪Et

g̃
(t)
i .
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We can further write the update rule as:

wt+1 − w∗ =B̂(wt − w∗) + ηv̂ + ηu
(1)
t−1 + ηu

(2)
t−1 − ηϕtνt − ηu(3)t−1 . (D.31)

We bound each term one-by-one. Since G ⊂ Sgood and |G| = (1 − αcorrupt)n, using the

resilience property in Eq (5.5), we know

∥Σ−1/2v̂∥ = (1− αcorrupt) max
∥v∥=1

Σ−1/2

〈
v,

1

(1− αcorrupt)n

∑
i∈G

xizi

〉
≤ (1− αcorrupt)C2K

2α log2a(1/α)σ (D.32)

≤ C2K
2α log2a(1/α)σ . (D.33)

Let α̃ = |Et|/n. By assumption, we know α̃ ≤ α (which holds for the given dataset due

to Lemma D.3.3), and

∥Σ−1/2u
(1)
t ∥ = ∥Σ−1/2 1

n

∑
i∈Et

xix
⊤
i (wt − w∗)∥ .

From Corollary D.10.8, we know∣∣∣∣∣∥Σ−1/2 1

|Et|
∑
i∈Et

xix
⊤
i (wt − w∗)∥ − ∥wt − w∗∥Σ

∣∣∣∣∣
=

∣∣∣∣∣ max
u:∥u∥=1

1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i (wt − w∗)∥ − max

v:∥v∥=1
v⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i Σ

−1/2Σ1/2(wt − w∗)∥ − u⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤
(
Σ−1/2xix

⊤
i Σ

−1/2 − Id
)
Σ1/2(wt − w∗)∥

∣∣∣∣∣
=

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id
)
Σ1/2(wt − w∗)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id
)∥∥∥∥∥ · ∥∥Σ1/2(wt − w∗)

∥∥
≤2− α̃

α̃
C2K

2α log2a(1/α) ∥wt − w∗∥Σ .
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This implies that

∥Σ−1/2u
(1)
t ∥ ≤ ∥Σ−1/2 1

n

∑
i∈E

xix
⊤
i (wt − w∗)∥

≤
(
α̃ + 2C2K

2α log2a(1/α)
)
∥wt − w∗∥Σ

≤ 3C2K
2α log2a(1/α) ∥wt − w∗∥Σ , (D.34)

where the last inequality follows from the fact that α̃ ≤ α and our assumption that

C2K
2 log2a(1/ᾱ) ≥ 1 from Asmp. 7. Similarly, we use resilience property in Eq (5.5) instead

of Eq (5.6), we can show that

∥Σ−1/2u
(2)
t ∥ ≤ 3C2K

2α log2a(1/α)σ . (D.35)

Next, we consider u(3)t . Since |Sbad| ≤ αcorruptn and |Et| ≤ αn, using Eq (5.8) and

Corollary D.10.8, we have

∥Σ−1/2u
(3)
t ∥ = max

v:∥v∥=1

1

n

∑
i∈Sbad∪Et

v⊤Σ−1/2xiclipθt(x
⊤
i wt − yi)

≤ 2C2Kα loga(1/α)θt

≤ 6C1.5
2 K2α log2a(1/α)(∥wt − w∗∥Σ + σ) . (D.36)

Now we use Eq (D.33), Eq (D.34), Eq (D.35) and Eq (D.36) to bound the final error from

update rule in Eq (D.31).

Step 3: Analysis of the t-steps recurrence relation. We have controlled the

deterministic noise in the last step. In this step, we will upper bound the noise introduced by

the Gaussian noise for the purpose of privacy, and show the expected distance to optimum

decrease every step.

We want to emphasize that most of our technical contribution is in the convergence

analysis (Step 3 and Step 4). More precisely, naive linear regression analysis can only show a

suboptimal error rate of ∥ŵ − w⋆∥Σ = Õ(κασ) with sample size n = Õ(d/α2 + κ1/2d/(εα)).
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Define ut = (v̂ + u
(1)
t + u

(2)
t − u

(3)
t ). This follows from Eq (D.31):

wt+1 − w∗ =B̂(wt − w∗) + ηut − ηϕtνt (D.37)

=(Id − ηΣ̂)(wt − w∗) + ηut − ηϕtνt . (D.38)

From Eq (D.34), Eq (D.35) and Eq (D.36), it follows that

∥wt+1 − w∗∥Σ ≤ (1− 1

κ
)∥wt − w∗∥Σ + α(σ + ∥wt − w∗∥Σ)

where we omitted constants for simplicity, which after T = Õ(κ) iterations achieves a

sub-optimal error rate ∥wT − w∗∥Σ = Õ(κασ).

One attempt to get around it is to take the Euclidean norm instead, which gives, after

some calculations,

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2]− η
(
∥wt − w∗∥2Σ − α2σ2

)
.

This implies that E[∥wt+1−w∗∥2] strictly decreases as long as ∥wt−w∗∥2Σ > Cα2σ2, which

is the desired statistical error level we are targeting. With this analysis, we can show that in

T = Õ(κ) iterations, there exists at least one model wt that achieves E[∥wt−w∗∥2Σ] = Õ(α2σ2)

among all the intermediate models we have seen.

However, the problem is that under differential privacy, there is no way we could select

this good model wt among T models that we have, as privacy-preserving techniques for model

selection are not accurate enough to achieve the desired level of accuracy. Hence, we came up

with the following novel analysis that does not suffer from such issues.

We can rewrite Eq (D.31) or Eq (D.37) as

wt+1 − w∗ =B̂(wt − w∗) + ηut − ηϕtνt (D.39)

=B̂t+1(w0 − w∗) + η

t∑
i=0

B̂iut−i − η
t∑

i=0

ϕt−iB̂
iνt−i . (D.40)
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Taking expectations of Σ̂-norm square with respect to ν1, · · · , νt, we have

Eν1,...,νt∼N (0,Id)∥wt+1 − w∗∥2
Σ̂

(D.41)

≤ 2∥B̂t+1(w0 − w∗)∥2
Σ̂
+ 2E[∥η

t∑
i=0

B̂iut−i∥2Σ̂] + η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2
t−i] (D.42)

≤ 2∥B̂t+1(w0 − w∗)∥2
Σ̂
+ 2η2E[

t∑
i=0

t∑
j=0

∥B̂iut−i∥Σ̂∥B̂
jut−j∥Σ̂] (D.43)

+ η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2
t−i] , (D.44)

where at the second step we used the fact that ν1, ν2, · · · , νt are independent isotropic

Gaussian.

Note that

η∥B̂iut−i∥Σ̂ = η∥Σ̂1/2B̂iΣ̂1/2Σ̂−1/2ut−i∥

≤ η∥Σ̂1/2B̂iΣ̂1/2∥2 · ∥Σ̂−1/2ut−i∥

≤ η∥Σ̂1/2B̂iΣ̂1/2∥2 ρ̂(α) (∥wt−i − w∗∥Σ̂ + σ)

≤ 1

i+ 1
ρ̂(α) (∥wt−i − w∗∥Σ̂ + σ) ,

where ρ̂(α) = 1.1(6C2 + 6C1.5
2 )K2α log2a(1/α), and the second inequality follows from

Eq (D.34), Eq (D.35), Eq (D.36) and the deterministic condition in Eq (D.28). Note that

the last inequality is true because η ≤ 1/(1.1λmax) and ∥Σ̂1/2B̂iΣ̂1/2∥2 ≤ ∥Id − ηΣ̂∥i2∥Σ̂∥2 ≤

λmax/(i+ 1) .

This implies

E[η2
t∑

i=0

t∑
j=0

∥B̂iut−i∥Σ̂∥B̂
jut−j∥Σ̂] (D.45)

≤ 4E[
t∑

i=0

t∑
j=0

ρ̂(α)2

(i+ 1)(j + 1)
(E[∥wt−i − w∗∥2

Σ̂
] + E[∥wt−j − w∗∥2

Σ̂
] + σ2) (D.46)

≤ 8(
t∑

i=0

1

i+ 1
)2ρ̂(α)2(max

i
E[∥wt−i − w∗∥2

Σ̂
] + σ2) (D.47)

≤ 8(log t)2ρ̂(α)2(max
i

E[∥wt−i − w∗∥2
Σ̂
] + σ2) , (D.48)
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Then,

∥B̂t+1(w0 − w∗)∥2
Σ̂
= ∥Σ̂1/2B̂t+1Σ̂−1/2Σ̂1/2(w0 − w∗)∥2

≤ (1− 1

κ
)2(t+1)∥w0 − w∗∥2

Σ̂
≤ e−2(t+1)/κ∥w0 − w∗∥2

Σ̂
,

and for n ≳ (1/ε)
√
κd log(1/δ)/α,

η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2
t−i] (D.49)

≤η2
t∑

i=0

∥Id − ηΣ̂∥2i2 ∥Σ̂∥2 ·
2 log(1.25/δ0)K

2Tr(Σ) log2a(n/ζ0)C2K
2 log2a(1/(2α))(E[∥wt−i − w∗∥2Σ] + σ2)

ε20n
2

(D.50)

≤4
t∑

i=0

(
1

i+ 1
)2ρ̂(α)2(E[∥wt−i − w∗∥2

Σ̂
] + σ2) . (D.51)

We have

Eν1,...,νt∼N (0,Id)[∥wt+1−w∗∥2
Σ̂
] ≤ 2e−2(t+1)/κ∥w0−w∗∥2

Σ̂
+20(log t)2ρ̂(α)2(max

i∈[t]
E[∥wt−i−w∗∥2

Σ̂
]+σ2) .

Note that this also implies that

E[∥(wt′+t − w∗)∥2
Σ̂
|wt′ ] ≤ 2e−2t/κ∥wt′ − w∗∥2

Σ̂
+ 20ρ̂(α)2

t−1∑
i=0

(
1

i+ 1
)2(E[∥wt′+t−i − w∗∥2

Σ̂
|wt′ ] + σ2) ,

(D.52)

which implies

E[∥(wt′+t − w∗)∥2
Σ̂
] ≤ 2e−2t/κE[∥wt′ − w∗∥2

Σ̂
] + 20ρ̂(α)2

t−1∑
i=0

(
1

i+ 1
)2(E[∥wt′+t−i − w∗∥2

Σ̂
] + σ2)

(D.53)

≤ 2e−2t/κE[∥wt′ − w∗∥2
Σ̂
] + 20(log t)2ρ̂(α)2(max

i∈[t]
E[∥wt′+t−i − w∗∥2

Σ̂
] + σ2)

(D.54)

Step 4: End-to-end analysis of the convergence. In the last step, we shown that

the amount of estimation error decrease depends on the estimation error of the previous t
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steps. In order for the estimation error to decrease by a constant factor, we will take t = κ.

Roughly speaking, we will prove that for every κ steps, the estimation error will decrease

by a constant factor, if it is much larger than O((log κ)2ρ̂(α)2σ2). This implies we will reach

O((log κ)2ρ̂(α)2σ2) error with in Õ(κ) steps.

For any integer s ≥ 0, as long as maxi∈[(s−1)κ+1,sκ] E[∥wi − w∗∥2
Σ̂
] ≥ 2(log κ)2ρ̂(α)2σ2,

max
i∈[sκ+1,(s+1)κ]

E[∥wi − w∗∥2
Σ̂
] ≤ (

1

e2
+ (log κ)2ρ̂(α)2) max

i∈[(s−1)κ+1,sκ]
E[∥wi − w∗∥2

Σ̂
] + (log 2κ)2ρ̂(α)2σ2 .(D.55)

Assuming ρ̂(α)2(log κ)2 ≤ 1/2− 1/e2, the maximum expected error in a length κ sequence

decrease by a factor of 1/2 every time.

Now we bound the maximum expected error in the first length κ sequence: maxi∈[0,κ−1] E[∥wi−

w∗∥2
Σ̂
]. Since

E[∥wi − w∗∥2
Σ̂
] ≤ e−2i/κ∥w0 − w∗∥2

Σ̂
+ (log i)2ρ̂(α)2 max

j∈[0,i−1]
E[∥wj − w∗∥2

Σ̂
] + (log i)2ρ̂(α)2σ2 .

As a function of i, maxj∈[0,i−1] E[∥wj − w∗∥2
Σ̂
] only increase when it is smaller than

1

1− (log i)2ρ̂(α)2
(∥w0 − w∗∥2

Σ̂
+ (log i)2ρ̂(α)2σ2) .

Thus we conclude

max
i∈[0,κ−1]

E[∥wi − w∗∥2
Σ̂
] ≤ 1

1− (log κ)2ρ̂(α2)
(∥w0 − w∗∥2

Σ̂
+ (log κ)2ρ̂(α2)σ2)

s = log(∥w∗∥/(ρ̂(α)σ)) will give us

E[∥wsκ+1 − w∗∥2
Σ̂
] ≤ (log κ)2ρ̂(α)2σ2 .

D.9 Lower bounds

D.9.1 Proof of Proposition 5.3.8 for label corruption lower bounds

We first prove the following lemma.
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Lemma D.9.1. Consider an α label-corrupted dataset S = {(xi, yi)}ni=1 with α < 1/2, that

is generated from either xi ∼ N (0, 1), yi ∼ N (0, 1) or xi ∼ N (0, 1), zi ∼ N (0, 1− α2), yi =

αxi + zi. It is impossible to distinguish the two hypotheses with probability larger than 1/2.

In the first case,

(xi, yi) ∼ P1 = N (0,

1 0

0 1

).
In the second case,

(xi, yi) ∼ P2 = N (0,

1 α

α 1

).
By simple calculation, it holds that DKL(P1||P2) = −1

2
log(1− α2) ≤ α2/2 for all α < 1/2.

Then, Pinsker’s inequality implies that DTV (P1||P2) ≤ α/2. Since the covariate xi follows

from the same distribution in the two cases, and the total variation distance between the two

cases is less than α/2. This means there is an label corruption adversary that change α/2

fraction of yi’s in P1 to make it identical to P2. Therefore, no algorithm can distinguish the

two cases with probability better than 1/2 under α fraction of label corruption.

Since Σ = 1, σ2 ∈ [3/4, 1], the first case above has w∗ = 0, and the second case has

w∗ = α, this implies that no algorithm is able to achieve E[∥ŵ−w∗∥Σ] < σα for all instances

with ∥w∗∥ ≤ 1 under α fraction of label corruption.

D.10 Technical Lemmas

Lemma D.10.1 (Hanson-Wright inequality for subWeibull distributions [178]). Let S =

{xi ∈ Rd}ni=1 be a dataset consist of i.i.d. samples from (K, a)-subWeibull distributions, then

P

(∣∣∣∣∣ 1n
n∑

i=1

∥xi∥2 − Tr(Σ)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−min

{
nt2

K4(Tr(Σ))2
,

(
nt

K2Tr(Σ)

) 1
2a

})
. (D.56)

Lemma D.10.2. Let Y ∼ Lap(b). Then for all h > 0, we have P(|Y | ≥ hb) = e−h.

Lemma D.10.3. If x ∈ Rd is (K, a)-subWeibull for some a ∈ [1/2,∞). Then
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• for any fixed v ∈ Rd, with probability 1− ζ,

⟨x, v⟩2 ≤ K2v⊤Σv log2a(1/ζ) . (D.57)

• with probability 1− ζ,

∥x∥2 ≤ K2Tr(Σ) log2a(1/ζ) . (D.58)

We provide a proof in App. D.10.1.1.

Lemma D.10.4. Dataset S = {xi ∈ Rd}ni=1 consists i.i.d. samples from a zero mean

distribution D. Suppose D is (K, a)-subWeibull. Define Σ = Ex∼D[xx
⊤]. Then there exists a

constant c1 > 0 such that with probability 1− ζ,∥∥∥∥∥ 1n
n∑

i=1

xix
⊤
i − Σ

∥∥∥∥∥ ≤ c1

K2d log(d/ζ) log2a(n/ζ)

n
+

√
K2d log(d/δ) log2a(n/ζ)

n

 ∥Σ∥2 .
(D.59)

Lemma D.10.5 (Lemma F.1 from [159]). Let x ∈ Rd ∼ N (0,Σ). Then there exists universal

constant C6 such that with probability 1− ζ,

∥x∥2 ≤ C Tr(Σ) log(1/ζ) . (D.60)

Definition D.10.6 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2, ρ3, ρ4)-

corrupt good with respect to (w∗,Σ, σ) if it is αcorrupt-corruption of an (α, ρ1, ρ2, ρ3, ρ4)-resilient

dataset Sgood.

Lemma D.10.7. Under Assumptions 8 and 7, there exists positive constants c1 and C2 such

that if n ≥ c1((d+log(1/ζ))/α2, then with probability 1−ζ, Sgood is, with respect to (w∗,Σ, σ),

(α,C2K
2α log2a(1/α), C2K

2α log2a(1/α), C2K
2α log2a(1/α), C2Kα loga(1/α))-resilient.

We provide a proof in App. D.7.



304

Corollary D.10.8 (Lemma 10 from [185] and Lemma 25 from [161]). For a (α, ρ1, ρ2, ρ3, ρ4)-

resilient set S with respect to (w∗,Σ, γ) and any 0 ≤ α̃ ≤ α, the following holds for any subset

T ⊂ S of size at least α̃n and for any unit vector v ∈ Rd:∣∣∣ 1|T | ∑
(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i w∗)
∣∣∣ ≤ 2− α̃

α̃
ρ1
√
v⊤Σv σ , (D.61)∣∣∣∣∣ 1|T |∑

xi∈T

⟨v, xi⟩2 − v⊤Σv

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ2v
⊤Σv , (D.62)

∣∣∣ 1|T | ∑
(xi,yi)∈T

(yi − x⊤i w∗)2 − σ2
∣∣∣ ≤ 2− α̃

α̃
ρ3 σ

2 , and (D.63)∣∣∣∣∣ 1|T |∑
xi∈T

⟨v, xi⟩

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ4
√
v⊤Σv . (D.64)

D.10.1 Proof of technical lemmas

D.10.1.1 Proof of Lemma D.10.3

Using Markov inequality,

P
(
⟨v, x⟩2 ≥ t2

)
= P

(
e⟨v,x⟩

1/a

≥ et
1/a
)

(D.65)

≤ e−t1/aE[e⟨v,x⟩
1/a

] (D.66)

≤ e−t1/aeK(E[⟨v,x⟩2])1/(2a) (D.67)

= 2 exp
(
−
( t2

K2E[⟨v, x⟩2]

)1/(2a))
. (D.68)

This implies for any fixed v, with probability 1− ζ,

⟨x, v⟩2 ≤ K2v⊤E[xx⊤]v log2a(1/ζ) . (D.69)

For j-th coordinate, let v = ej where j ∈ [d]. Definition D.8.1 implies

E

[
exp

((
x2j

K2Tr(Σ)

)1/(2a)
)]
≤ E

[
exp

((
x2j

K2Σjj

)1/(2a)
)]
≤ 2 . (D.70)
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Note that f(x) = xα is concave function for α ≤ 1 and x > 0. Then (a1 + · · · ak)α ≤

aα1 + · · · aαk holds for any positive numbers a1, · · · , ak > 0. By our assumption that 1/(2a) ≤ 1.

, we have

E[exp

((
∥x∥2

K2Tr(Σ)

)1/(2a)
)
] = E[exp

((
x21 + x22 + · · ·+ x2d

K2Tr(Σ)

)1/(2a)
)
] (D.71)

≤ E[
d∏

j=1

exp

((
x2j

K2Tr(Σ)

)1/(2a)
)
] (D.72)

≤


∑d

j=1 E[exp
((

x2
j

K2 Tr(Σ)

)1/(2a))
]

d


d

(D.73)

≤ 2 . (D.74)

By Markov inequality,

P (∥x∥ ≥ t) = P
(
e∥x∥

1/a ≥ et
1/a
)

(D.75)

≤ e−t1/aE[e∥x∥1/a ] (D.76)

≤ exp

(
−
(

t2

K2Tr(Σ)

)1/(2a)
)
. (D.77)

This implies with probability 1− ζ,

∥x∥2 ≤ K2Tr(Σ) log2a(1/ζ) . (D.78)

D.11 Experiments

D.11.1 DP Linear Regression

Experimental results for ϵ = 0.1 can be found in Figure D.1. The observations are similar

to the ϵ = 1 case. In particular, DP-SSP has poor performance when σ is small. In other

settings, DP-SSP has better performance than DP-RobGD.
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Figure D.1: Performance of various techniques on DP linear regression. d = 10 in all the

experiments. n = 107, κ = 1 in the 2nd experiment. n = 107, σ = 1 in the 3rd experiment.

Figure D.2: Non-robustness of existing techniques to adversarial corruptions. n = 107, σ = 1

in both experiments.

D.11.2 DP Robust Linear Regression

We now illustrate the robustness of our algorithm. We consider the same experimental setup

as in Sec. 5.4 and randomly corrupt α fraction of the response variables by setting them

to 1000. Figure D.2 presents the results from this experiment. It can be seen that none

of the baselines are robust to adversarial corruptions. They can be made arbitrarily bad

by increasing the magnitude of corruptions. In contrast, DP-RobGD is able to handle the

corruptions well.
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D.11.3 Stronger adversary for DP Robust Linear Regression

In this section, we consider a stronger adversary for DP-RobGD than the one considered

in Sec. 5.4. Recall, for the adversary model considered in Sec. 5.4, DP-RobGD was able to

consistently estimate the parameter w∗ (i.e., the parameter recovery error goes down to 0 as

n→∞). This is because the algorithm was able to easily identify the corruptions and ignore

the corresponding points while performing gradient descent. We now construct a different

instance where the corruptions are hard to identify. Consequently, DP-RobGD can no longer

be consistent against the adversary. This hard instance is inspired by the lower bound in

[22] (see Theorem 6.1 of [22]). This is a 2 dimensional problem where the first covariate is

sampled uniformly from [−1, 1]. The second covariate, which is uncorrelated from the first, is

sampled from a distribution with the following pdf

p(x(2)) =


α
2

if x(2) ∈ {−1, 1}

1−α
2ασ

if x(2) ∈ [−σ, σ]

0 otherwise

.

We set σ = 0.1 in our experiments. The noise zi is sampled uniformly from [−σ, σ]. We

consider two possible parameter vectors w∗ = (1, 1) and w∗ = (1,−1). It can be shown that

the total variation (TV) distance between these problem instances (each parameter vector

corresponds to one problem instance) is Θ(α) [22]. What this implies is that, one can corrupt

at most α fraction of the response variables and convert one problem instance into another.

Since the distance (in Σ norm) between the two parameter vectors is Ω(ασ), any algorithm

will suffer an error of Ω(ασ).

We generate 107 samples from this problem instance and add corruptions that convert

one problem instance to the other. Figure D.3 presents the results from this experiment. It

can be seen that our algorithm works as expected. In particular, it is not consistent in this

setting. Moreover, the parameter recovery error increases with the fraction of corruptions.
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Figure D.3: Performance against the stronger adversary

D.12 Heavy-tailed noise

We study the heavy-tailed regression settings where the label noise zi is hypercontractive, which

is common in robust linear regression literature [143, 161]. We define (κ2, k)-hypercontractivity

as follows. This is a heavy-tailed distribution we have bound only up to the k-th moment.

Definition D.12.1. For integer k ≥ 4, a distribution Pµ,Σ is (κ2, k)-hypercontractive if for

all v ∈ Rd, Ex∼PX
[|⟨v, (x− µ)⟩|k] ≤ κk2(v

⊤Σv)k/2, where Σ is the covariance.

We give a formal description of our setting in Asmp. 9. Note that we consider the

input vector xi to be sub-Weibull and label noise zi to be hypercontractive. If both

xi and zi are hypercontractive, the uncorrupted set Sgood is known to be not resilient

[217, 161]. However, by [217, Lemma G.10], we can clip xi by O(
√
d∥Σ∥2), and obtain a

(α,O(κα1−1/k), O(κα1−2/k), O(κα1−2/k), O(κα1−1/k))-resilient set [161, Lemma 4.19]. This

would result in sub-optimal error rate Õ(κα1−2/k), which depends on condition number κ.

For convenience, in this section, we further assume that xi and zi are independent. In the

dependent case, the only thing we need to change is the ρ1 resilience from O(α1−1/k) to

O(α1−2/k) in Lemma D.12.2. This would result in O(α1−3/k) error rate if we plug this new

resilience in Thm. D.12.3.

Assumption 9 ((Σ, σ2, w∗, K, a, κ2, k)-model). A multiset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 of

n i.i.d. samples is from a linear model yi = ⟨xi, w∗⟩ + zi, where the input vector xi is zero

mean, E[xi] = 0, with a positive definite covariance Σ := E[xix⊤i ] ≻ 0, and the independent

label noise zi is zero mean, E[zi] = 0, with variance σ2 := E[z2i ]. We assume that the marginal
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distribution of xi is (K, a)-sub-Weibull and that of zi is (κ2, k)-hypercontractive, as defined

above.

This is similar to the light-tailed case in Asmp. D.8.1. The main difference is that the

noise zi is heavy-tailed and independent of the input xi.

Assumption 10 (αcorrupt-corruption). Given a dataset Sgood = {(xi, yi)}ni=1, an adversary

inspects all the data points, selects αcorruptn data points denoted as Sr, and replaces the labels

with arbitrary labels while keeping the covariates unchanged. We let Sbad denote this set of

αcorruptn newly labelled examples by the adversary. Let the resulting set be S := Sgood∪Sbad\Sr.

We further assume that the corruption rate is bounded by αcorrupt ≤ ᾱ, where ᾱ is a positive

constant that depends on κ2, k, K, log(κ), a and ζ.

Compared to Asmp. 7, this only difference is in the conditions on ᾱ. Similar as

Lemma D.10.7, we have the following lemma showing that under Asmp. 9, the uncor-

rupted dataset can Sgood is corrupt-good, which means that it can be seen as being corrupted

from a resilient set. We provide the proof in App. D.12.2.

Lemma D.12.2. A multiset of i.i.d. labeled samples Sgood = {(xi, yi)}ni=1 is generated from

a linear model: yi = ⟨xi, w∗⟩ + zi, where feature vector xi has zero mean and covariance

E[xix⊤i ] = Σ ≻ 0, independent label noise zi has zero mean and covariance E[z2i ] = σ2 > 0.

Suppose xi is (K, a)-sub-Weibull, zi is (κ2, k)-hypercontractive, then there exist constants

c1, C2 > 0 such that, for any 0 < α ≤ α̃ ≤ c where c ∈ (0, 1/2) is some absolute constant if

n ≥ c1

(
d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ22
+
κ22d log d

α2/k
+
d+ log(1/ζ)

α̃2

)
, (D.79)

then with probability 1− ζ, Sgood is

(0.2α, α, C2k(ka)
aKκ2α

1−1/kζ−1/k, C2K
2α̃ log2a(1/α̃), C2k

2κ22α
1−2/kζ−2/k, C2Kα̃ loga(1/α̃))-corrupt

good with respect to (w∗,Σ, σ).

In the rest of this section, we assume we have a (O(α), α, ρ1, ρ2, ρ3, ρ4)-corrupt good set

under Asmp. 9 and present following algorithm and our main theorem under this setting in

Thm. D.12.3. We also provide the proof in App. D.12.1.
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Algorithm 25: Robust and Private Linear Regression for heavy-tailed noise
Input: dataset S = {(xi, yi)}3ni=1, (ε, δ), T , learning rate η, failure probability ζ,

target error rate α, distribution parameter (K, a)

1 Partition dataset S into three equal sized disjoint subsets S = S1 ∪ S2 ∪ S3.

2 δ0 ← δ/(2T ), ε0 ← ε/(4
√
T log(1/δ0)), ζ0 ← ζ/3, w0 ← 0

3 Γ← PrivateNormEstimator(S1, ε0, δ0, ζ0), Θ← K
√
2Γ loga(n/ζ0)

4 for t = 1, 2, . . . , T − 1 do

5 γt ← RobustPrivateDistanceEstimator(S2, wt, ε0, δ0, α, ζ0)

6 θt ← 2
√
2γt ·

√
max{8ρ2/α, 8ρ3/α}+ 1.

7 Sample νt ∼ N (0, Id)

8 wt+1 ← wt − η
(

1
n

∑
i∈S3

(
clipΘ(xi)clipθt

(
w⊤

t xi − yi
))

+

√
2 log(1.25/δ0)Θθt

ε0n
· νt
)

9 Return wT

Theorem D.12.3. Alg. 25 is (ε, δ)-DP. Under (Σ, σ2, w∗, K, a, κ2, k)-model of Asmp. 9 and

αcorrupt-corruption of Assumption 10 and for any failure probability ζ ∈ (0, 1) and target error

rate α ≥ 1.2αcorrupt, if the dataset S is (0.2α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect

to (w∗,Σ, σ) and sample size is large enough such that

n =O

(
K2d log(d/ζ) log2a(n/ζ) +

K2dT 1/2 log(T/δ) loga(n/(αζ))
√

8max{ρ2/α, ρ3/α}+ 1

ερ̂(α)

)
,

(D.80)

where ρ̂(α) = max{ρ1, 3ρ2, 2ρ4
√

8max{ρ2/α, ρ3/α}+ 1}, then the choices of a small enough

step size, η ≤ 1/(1.1λmax(Σ)), and the number of iterations, T = Θ̃ (κ log (∥w∗∥)) for a

condition number of the covariance κ := λmax(Σ)/λmin(Σ), ensures that, with probability 1− ζ,

Alg. 13 achieves

Eν1,··· ,νt∼N (0,Id)

[
∥wT − w∗∥2Σ

]
= Õ

(
ρ̂2(α)σ2

)
, (D.81)

where the expectation is taken over the noise added for DP, and Θ̃(·) hides logarithmic terms

in K,κ2, σ, d, n, 1/ε, log(1/δ), 1/α, and κ.
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By Lemma D.12.2, if we set α̃ = α1−1/k, ρ1 = C2k(ka)
aKκ2α

1−1/kζ−1/k, ρ2 = C2K
2α1−1/k log2a(1/α1−1/k),ρ3 =

C2k
2κ22α

1−2/kζ−2/k, and ρ4 = C2Kα
1−1/k loga(1/α1−1/k), we have following corollary.

Corollary D.12.4. Under the same hypotheses of Thm. D.12.3 and under αcorrupt-corruption

model of Asmp. 10, if 1.2αcorrupt ≤ α and K, a, κ2, k = O(1), then n = Õ(d/(ζ2−2/kα2−2/k) +

κ1/2d log(1/δ)/(εα1−1/k)) samples are sufficient for Alg. 25 to achieve an error rate of

(1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2−4/k) with probability 1 − ζ, where κ := λmax(Σ)/λmin(Σ),

Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.

Simiarly, if we set α̃ = α, ρ1 = C2k(ka)
aKκ2α

1−1/kζ−1/k, ρ2 = C2K
2α log2a(1/α),ρ3 =

C2k
2κ22α

1−2/kζ−2/k, and ρ4 = C2Kα loga(1/α), we have following corollary.

Corollary D.12.5. Under the same hypotheses of Thm. D.12.3 and under αcorrupt-corruption

model of Asmp. 10, if 1.2αcorrupt ≤ α and K, a, κ2, k = O(1), then n = Õ(d/(ζ2−2/kα2−2/k) +

κ1/2d log(1/δ)/(εα)+ (d+ log(1/ζ)/α2)) samples are sufficient for Alg. 25 to achieve an error

rate of (1/σ2)∥ŵ−w∗∥2Σ = Õ(ζ−2/kα2−2/k) with probability 1−ζ, where κ := λmax(Σ)/λmin(Σ),

Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.

As a comparison, we also apply the exponential-time robust linear regression algorithm

HPTR by [161] under our setting.

Theorem D.12.6 ([161, Theorem 12]). There exist positive constants c and C such that for

any ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (w∗,Σ ≻ 0, σ > 0) satisfying

α < c, ρ1 < c, ρ2 < c, ρ3 < c,and ρ24 ≤ cα, HPTR achieves (1/σ)∥(β̂ − β)∥Σ ≤ 32ρ1 with

probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
. (D.82)

We set α̃ = α1−1/k, ρ1 = C2k(ka)
aKκ2α

1−1/kζ−1/k, ρ2 = C2K
2α1−1/k log2a(1/α1−1/k),ρ3 =

C2k
2κ22α

1−2/kζ−2/k, and ρ4 = C2Kα
1−1/k loga(1/α1−1/k), we have the following utility gau-

rentees.
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Corollary D.12.7. Under the hypothesis of Asmp. 9, there exists a constant c > 0 such that

for any α ≤ c, (ka)aKκ2α1−1/kζ−1/k ≤ c, k2κ22α1−2/kζ−2/k ≤ c and K2α1−2/k log2a(1/α1−1/k) ≤

c, it is sufficient to have a dataset of size

n = O
( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ22
+
κ22d log d

α2/k

)
, (D.83)

such that HPTR achieves (1/σ)∥ŵ−w∗∥Σ = O(k(ka)aKκ2α
1−1/kζ−1/k) with probability 1− ζ.

Note that both of our result in Corollary D.12.4 and Corollary D.12.5 are subopti-

mal compared to the exponential time algorithm HPTR from Corollary D.12.7. Suppose

K, a, κ2, k, ζ = Θ(1), HPTR achieves (1/σ)∥w∗ − ŵ∥ = Õ(α1−1/k) with sample complexi-

ties n = d/(α2(1−1/k)) + (d + log(1/δ))/(εn). However, in the analysis in Corollary D.12.4,

Alg. 25 achieves (1/σ)∥w∗ − ŵ∥ = Õ(α1−2/k) with the same sample complexities. In the

analysis in Corollary D.12.5, Alg. 25 achieves the same error rate as HPTR but requires

extra Õ(d/α2) sample complexities. The suboptimality is caused by the gradient truncation

step in our algorithm. From Thm. D.12.6, the final error rate of HPTR only depends on

the first resilience ρ1. However in Thm. D.12.3, the final error rate of Alg. 25 depends on

ρ̂(α) = max{ρ1, ρ2, ρ4
√
ρ2/α}. When the noise is heavy-tailed, the bottleneck is the last term

ρ4
√
ρ2/α ≈ α1−2/k, which is due to the truncation threshold from Eq (D.93). This cannot be

tightened by using a smaller truncation threshold. Because we can construct yi, such that

there are α-fraction of points that are at the threshold level θt ≈ α−1/k(line 6 of Alg. 25). If

exponential time complexity is allowed, we could robustly and privately estimate the average

of the gradients by directly estimating the xiyi. However, the current best efficient algorithm

[160] for estimating the mean of Gaussian with unknown covariance robustly and privately

would require O(d1.5) samples.

For a fair comparison, we also rewrite the error rates of Corollary D.12.4, Corollary D.12.5,

Corollary D.12.7 as the same accuracy level α and different corruption level αcorrupt respectively.

Corollary D.12.8. Under the same hypotheses of Thm. D.12.3 and under αcorrupt-corruption

model of Asmp. 10, if 1.2αcorrupt ≤ αk/(k−2) and K, a, κ2, k = O(1), then

n = Õ(d/(ζ2−2/kα2(k−1)/(k−2)) + κ1/2d log(1/δ)/(εα(k−1)/(k−2)))
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samples are sufficient for Alg. 25 to achieve an error rate of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2)

with probability 1−ζ, where κ := λmax(Σ)/λmin(Σ), Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ)

and κ.

Corollary D.12.9. Under the same hypotheses of Thm. D.12.3 and under αcorrupt-corruption

model of Asmp. 10, if 1.2αcorrupt ≤ αk/(k−1) and K, a, κ2, k = O(1), then

n = Õ(d/(ζ2−2/kα2) + κ1/2d log(1/δ)/(εαk/(k−1)) + (d+ log(1/ζ)/α2k/(k−1)))

samples are sufficient for Alg. 25 to achieve an error rate of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2)

with probability 1−ζ, where κ := λmax(Σ)/λmin(Σ), Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ)

and κ.

Corollary D.12.10 (HPTR). Under the same hypotheses of Thm. D.12.3 and under αcorrupt-

corruption model of Asmp. 10, if αcorrupt ≤ αk/(k−1) and α(k−2)/(k−1) ≤ c and K, a, κ2, k = O(1),

then

n = Õ(
d

ζ2−2/kα2
+
d+ log(1/(δζ))

εαk/k−1
)

samples are sufficient for HPTR to achieve an error rate of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2)

with probability 1− ζ, Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.

D.12.1 Proof of Thm. D.12.3

Proof. The proof follows similarly as the proof of Thm. D.8.2. We only highlight the difference

in the proof.

Let Sgood be the uncorrupted dataset for S3 and Sbad be the corrupted data points

in S3. Let G denote the clean data that satisfies resilience conditions. We know |G| ≥

(1− 1.2αcorrupt)n ≥ (1− α)n.

Let λmax = ∥Σ∥2. Define Σ̂ := (1/n)
∑

i∈G xix
⊤
i , B̂ := Id − ηΣ̂. Lemma D.10.4 implies

that if n = O(K2d log(d/ζ) log2a(n/ζ)), then

0.9Σ ⪯ Σ̂ ⪯ 1.1Σ . (D.84)
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We pick step size η such that η ≤ 1/(1.1λmax) to ensure that η ≤ 1/∥Σ̂∥2. Since the covariates

{xi}i∈S are not corrupted, from Lemma D.10.3, we know with probability 1− ζ, for all i ∈ S3,

∥xi∥2 ≤ K2Tr(Σ) log2a(n/ζ) . (D.85)

The rest of the proof is under Eq (D.84), Eq (D.85) and the resilience conditions.

Let ϕt = (
√

2 log(1.25/δ0)Θθt)/(ε0n). Define g(t)i := xi(x
⊤
i wt − yi). For i ∈ Sgood, we

know yi = x⊤i w
∗ + zi. Let g̃(t)i = clipΘ(xi)clipθt(x

⊤
i wt − yi). Note that under Eq (D.85),

clipΘ(xi) = xi for all i ∈ S3.

From Alg. 25, we can write one-step update rule as follows:

wt+1 − w∗

=wt − η

(
1

n

∑
i∈S

g̃
(t)
i + ϕtνt

)
− w∗

=

(
I− η

n

∑
i∈G

xix
⊤
i

)
(wt − w∗) +

η

n

∑
i∈G

xizi +
η

n

∑
i∈G

(g
(t)
i − g̃

(t)
i )− ηϕtνt −

η

n

∑
i∈S3\G∪Et

g̃
(t)
i

(D.86)

Let Et := {i ∈ G : θt ≤ |x⊤i wt − yi|} be the set of clipped clean data points such that∑
i∈G(g

(t)
i −g̃

(t)
i ) =

∑
i∈Et

(g
(t)
i −g̃

(t)
i ). We define v̂ := (1/n)

∑
i∈G xizi, u

(1)
t := (1/n)

∑
i∈Et

xix
⊤
i (wt−

w∗), u(2)t := (1/n)
∑

i∈Et
−xizi, and u(3)t := (1/n)

∑
i∈S3\G∪Et

g̃
(t)
i .

We can further write the update rule as:

wt+1 − w∗ =B̂(wt − w∗) + ηv̂ + ηu
(1)
t−1 + ηu

(2)
t−1 − ηϕtνt − ηu(3)t−1 . (D.87)

Since G ⊂ Sgood and |G| ≥ (1− α)n, using the resilience property in Eq (5.5), we know

∥Σ−1/2v̂∥ = |G| max
∥v∥=1

Σ−1/2

〈
v,

1

|G|
∑
i∈G

xizi

〉
≤ (1− α)ρ1σ (D.88)

≤ ρ1σ . (D.89)

Let α2 = |Et|/n. Following the proof of Lemma D.3.3, we can show following lemma.
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Lemma D.12.11. Under Assumptions 9, if θt ≥
√

max{8ρ2/α, 8ρ3/α}+ 1·(∥w∗ − wt∥Σ + σ),

then

∣∣{i ∈ G :
∣∣w⊤

t xi − yi
∣∣ ≥ θt

}∣∣ ≤ αn

, for all t ∈ [T ].

Similar as Thm. D.3.1, we have following theorem.

Theorem D.12.12. Alg. 23 is (ε0, δ0)-DP. For an (αcorrupt, ᾱ, ρ1, ρ2, ρ3, ρ4)-corrupted good

dataset S2 and an upper bound ᾱ on αcorrupt that satisfy Asmp. 9 and ρ1 + ρ2 + ρ3 ≤ 1/4, for

any ζ ∈ (0, 1), if

n = O

(
log(1/ζ) log(1/(δ0ζ))

ᾱε0

)
, (D.90)

with a large enough constant then, with probability 1− ζ, Alg. 23 returns ℓ such that 1
4
(∥wt −

w∗∥2Σ + σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

This means α2 ≤ α, and we have

∥Σ−1/2u
(1)
t ∥ = ∥Σ−1/2 1

n

∑
i∈Et

xix
⊤
i (wt − w∗)∥ .
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From Corollary D.10.8, we know∣∣∣∣∣∥Σ−1/2 1

|Et|
∑
i∈Et

xix
⊤
i (wt − w∗)∥ − ∥wt − w∗∥Σ

∣∣∣∣∣
=

∣∣∣∣∣ max
u:∥u∥=1

1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i (wt − w∗)∥ − max

v:∥v∥=1
v⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i Σ

−1/2Σ1/2(wt − w∗)∥ − u⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤
(
Σ−1/2xix

⊤
i Σ

−1/2 − Id
)
Σ1/2(wt − w∗)∥

∣∣∣∣∣
=

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id
)
Σ1/2(wt − w∗)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id
)∥∥∥∥∥ · ∥∥Σ1/2(wt − w∗)

∥∥
≤2− α2

α2

ρ2 ∥wt − w∗∥Σ .

This implies that

∥Σ−1/2u
(1)
t ∥ ≤ ∥Σ−1/2 1

n

∑
i∈E

xix
⊤
i (wt − w∗)∥

≤ (α2 + 2ρ2) ∥wt − w∗∥Σ

≤ 3ρ2 ∥wt − w∗∥Σ , (D.91)

where the last inequality follows from the fact that α2 ≤ α and our assumption that α ≤ ρ2

from Asmp. 10. Similarly, we use resilience property in Eq (5.5) instead of Eq (5.6), we can

show that

∥Σ−1/2u
(2)
t ∥ ≤ 3ρ3σ . (D.92)

Next, we consider u(3)t . Since |S3 \ G| ≤ 1.2αcorruptn and |Et| ≤ αn, using Eq (5.8) and
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Corollary D.10.8, we have

∥Σ−1/2u
(3)
t ∥ = max

v:∥v∥=1

1

n

∑
i∈Sbad∪Et

v⊤Σ−1/2xiclipθt(x
⊤
i wt − yi)

≤ 2ρ4θt

≤ 2ρ4
√
8max{ρ2/α, ρ3/α}+ 1 · (∥wt − w∗∥Σ + σ) . (D.93)

The analysis of convergence follows similarly as in Step 3 and Step 4 of the proof of

Thm. D.8.2 except we set ρ̂(α) = max{ρ1, 3ρ2, 2ρ4
√

8max{ρ2/α, ρ3/α}+ 1}.

The second term in Eq (D.80) ensures the added Gaussian noise is small enough such

that ϕ2
t∥vt∥2 ≤ ρ̂(α)2(E[∥wt − w∗∥2Σ] + σ2), which is similar as in Eq (D.51)

D.12.2 Proof of Lemma D.12.2

Proof. For any x that is (K, a)-sub-Weibull from Definition D.8.1, Eq (D.68) implies that for

any k ≥ 1,

E[| ⟨v, x⟩ |k] =
∫ ∞

0

P(| ⟨v, x⟩ | ≥ t1/k)dt (D.94)

≤
∫ ∞

0

2 exp

(
− t

1
ka

(K2E[⟨v, x⟩2]) 1
2a

)
dt (D.95)

= 2Kk(E[⟨v, x⟩2])k/2ka
∫ ∞

0

e−uuka−1du (D.96)

= 2Kk(E[⟨v, x⟩2])k/2Γ(ka+ 1) (D.97)

≤ 2Kk(E[⟨v, x⟩2])k/2(ka)ka (D.98)

This implies that xi is also ((ka)aK, k)-hypercontractive. Since xi and zi are independent,

we have

E
[∣∣〈v, σ−1Σ−1/2xizi

〉∣∣k] = E
[∣∣〈v,Σ−1/2xi

〉∣∣k]E [∣∣σ−1zi
∣∣k] ≤ 2(ka)kaKkκk2 . (D.99)

This means xizi is also ((ka)aKκ2, k)-hypercontractive. From [217, Lemma G.10], we know

with probability 1 − ζ, there exists S1 ⊂ Sgood with |S1| ≥ (1 − 0.1α)|Sgood|, such that for
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any T ⊂ S1 with |T | ≥ (1− α)|S1|, we have∣∣∣ 1|T | ∑
(xi,yi)∈S

〈
v, σ−1Σ−1/2xi(yi − x⊤i w∗)

〉 ∣∣∣ ≤ C2k(ka)
aKκ2α

1−1/kζ−1/k . (D.100)

Similarly, there exists S2 ⊂ Sgood with |S2| ≥ (1− 0.1α)|Sgood|, such that for any T ⊂ S2

with |T | ≥ (1− α)|S2|, we have∣∣∣ 1|T | ∑
(xi,yi)∈T

(σ−1(yi − x⊤i w∗))2 − 1
∣∣∣ ≤ C2k

2κ22α
1−2/kζ−2/k . (D.101)

From Lemma D.10.7, for any T ⊂ Sgood with |T | ≥ (1− α̃)|Sgood|, we have∣∣∣ 1|T | ∑
(xi,yi)∈T

〈
v,Σ−1/2xi

〉2 − 1
∣∣∣ ≤ C2Kα̃ log2a(1/α̃) . (D.102)

and ∣∣∣ 1|T | ∑
(xi,yi)∈T

〈
v,Σ−1/2xi

〉 ∣∣∣ ≤ C2Kα̃ loga(1/α̃) . (D.103)

Set S = S1 ∩ S2, we know |S| ≥ (1− 0.2α)|Sgood| and S is

(0.2α, α, C2k(ka)
aKκ2α

1−1/kζ−1/k, C2K
2α̃ log2a(1/α̃), C2k

2κ22α
1−2/kζ−2/k, C2Kα̃ loga(1/α̃))-corrupt

good with respect to (w∗,Σ, σ). This completes the proof.
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